甘蔗茎节检测系统源码分享

甘蔗茎节检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球人口的不断增长和对食品需求的日益增加,农业生产的效率和可持续性成为了各国政府和科研机构关注的重点。在这一背景下,精准农业作为一种新兴的农业管理理念,逐渐受到重视。精准农业依赖于高效的数据采集和分析技术,以实现对作物生长状态的实时监测和管理。甘蔗作为重要的经济作物,其生长过程中的各个环节都对最终的产量和质量产生重要影响。因此,开发高效的甘蔗生长监测系统,对于提高甘蔗的产量和品质具有重要的实际意义。

在甘蔗的生长过程中,茎节的发育情况直接影响到甘蔗的生长势和糖分积累。传统的人工监测方法不仅耗时耗力,而且容易受到人为因素的影响,导致数据的准确性和可靠性降低。因此,基于计算机视觉和深度学习技术的自动化检测系统应运而生。YOLO(You Only Look Once)系列算法因其高效的实时检测能力,已成为目标检测领域的热门选择。YOLOv8作为该系列的最新版本,具备更强的特征提取能力和更快的推理速度,适合于复杂环境下的目标检测任务。

本研究旨在基于改进的YOLOv8算法,构建一个高效的甘蔗茎节检测系统。通过对2100张甘蔗茎节图像的训练,系统将能够自动识别和定位甘蔗的茎节,进而为甘蔗的生长监测提供科学依据。该数据集的构建不仅为模型的训练提供了丰富的样本,还为后续的模型优化和性能评估奠定了基础。值得注意的是,甘蔗茎节的检测不仅涉及到目标的识别,还需要考虑到环境因素对检测结果的影响,如光照变化、背景杂乱等。因此,改进YOLOv8算法的关键在于如何增强模型的鲁棒性和适应性,以确保在各种复杂条件下都能保持较高的检测精度。

本研究的意义不仅在于技术层面的创新,更在于推动精准农业的发展。通过实现甘蔗茎节的自动检测,农民可以更及时地掌握甘蔗的生长状况,从而制定更科学的管理措施,提升甘蔗的产量和质量。此外,该系统的成功应用也为其他作物的生长监测提供了借鉴,具有广泛的推广价值和应用前景。

综上所述,基于改进YOLOv8的甘蔗茎节检测系统的研究,不仅具有重要的理论价值,也具有显著的实际应用意义。通过本研究的开展,将为甘蔗生产的智能化、精准化管理提供新的思路和方法,助力农业现代化进程的推进。

2.图片演示



注意:由于此博客编辑较早,上面"2.图片演示"和"3.视频演示"展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的"目标检测"模型和"实例分割"模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持"图片识别"、"视频识别"、"摄像头实时识别"三种识别模式。

(3)支持"图片识别"、"视频识别"、"摄像头实时识别"三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 1

names: ['internode']

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们使用了名为"sugarcane stem"的数据集,以支持对甘蔗茎节的检测系统进行改进,特别是针对YOLOv8模型的训练和优化。该数据集专注于甘蔗茎节的特征提取与识别,旨在提升农业自动化和精准农业的应用效果。数据集的类别数量为1,具体类别为"internode",即甘蔗的茎节部分。通过这一单一类别的专注,我们能够更深入地挖掘甘蔗茎节的形态特征与生长状态,为后续的检测算法提供更加精准的训练数据。

"sugarcane stem"数据集包含了大量高质量的图像,这些图像涵盖了不同生长阶段、不同环境条件下的甘蔗茎节。每张图像都经过精细标注,确保模型在训练过程中能够准确学习到甘蔗茎节的外观特征。这些图像不仅包括了正常生长的茎节,还涵盖了受病虫害影响的茎节样本,极大地丰富了数据集的多样性和复杂性,使得模型在面对实际应用时能够具备更强的鲁棒性。

在数据集的构建过程中,研究团队采取了多种采集方式,包括实地拍摄和实验室控制条件下的拍摄,以确保数据的全面性和代表性。通过这种方式,数据集能够涵盖不同的光照条件、角度和背景,增强了模型的泛化能力。此外,数据集还包含了不同生长环境下的甘蔗样本,如不同土壤类型、气候条件等,这为模型的训练提供了丰富的上下文信息,使其能够更好地适应实际应用场景。

在训练过程中,我们将"sugarcane stem"数据集与YOLOv8模型相结合,利用其强大的特征提取能力和实时检测性能,旨在实现对甘蔗茎节的高效识别。通过对数据集的深入分析与处理,我们可以优化模型的参数设置,调整网络结构,以提高检测的准确性和速度。同时,数据集的单一类别特性使得模型的训练过程更加集中,减少了多类别干扰的影响,从而使得甘蔗茎节的检测更加精准。

为了评估模型的性能,我们将使用标准的评价指标,如平均精度均值(mAP)和召回率等,对模型在"sugarcane stem"数据集上的表现进行全面分析。这一过程不仅有助于验证模型的有效性,还为后续的研究提供了重要的参考依据。

总之,"sugarcane stem"数据集在本研究中扮演了至关重要的角色。通过对该数据集的充分利用,我们期望能够推动甘蔗茎节检测技术的发展,为农业生产提供更为先进的技术支持,助力实现智能农业的愿景。





5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法是Ultralytics公司在2023年推出的最新版本,标志着YOLO系列目标检测模型的又一次重大进化。相较于之前的版本,YOLOv8在多个方面进行了优化与创新,旨在提升目标检测的准确性和速度,同时保持其易用性。YOLOv8的设计理念围绕着快速、准确和灵活展开,使其在各种计算机视觉任务中表现出色,包括目标检测、图像分割和图像分类。

YOLOv8的网络结构可以分为几个主要部分:输入层、主干网络(Backbone)、颈部(Neck)和头部(Head)。首先,在输入层,YOLOv8默认接受640x640像素的图像作为输入。然而,考虑到实际应用中图像的长宽比可能各异,YOLOv8采用了自适应图片缩放技术。这种方法通过将图像的长边按比例缩小到指定尺寸,然后对短边进行填充,尽量减少信息冗余,提升目标检测的速度和效率。此外,在训练过程中,YOLOv8引入了Mosaic图像增强技术,通过随机选择四张图像进行缩放和拼接,生成新的训练样本。这种增强方法有效地提高了模型的泛化能力,使其能够更好地适应不同的场景和目标。

在主干网络部分,YOLOv8对C3模块进行了重要的改进,采用了C2F模块。C2F模块借鉴了YOLOv7中的ELAN设计思想,增加了更多的梯度流分支,旨在在保证轻量化的同时,获取更丰富的特征信息。这种结构的变化不仅提升了模型的精度,还降低了延迟,增强了实时检测的能力。通过这种方式,YOLOv8能够更有效地提取图像中的特征,尤其是在复杂场景下,表现出更强的鲁棒性。

接下来,在颈部(Neck)部分,YOLOv8对特征融合的方式进行了优化。与YOLOv5相比,YOLOv8去除了两次上采样之前的1x1卷积连接层,直接对主干网络不同阶段输出的特征进行上采样。这一改进使得特征融合更加高效,减少了计算复杂度,同时提升了模型的整体性能。

YOLOv8的头部(Head)部分是其最大的创新之一。该部分从耦合头(Coupled-Head)转变为解耦头(Decoupled-Head),将检测和分类的卷积操作分开处理。具体而言,输入特征图首先通过两个1x1卷积模块进行降维,然后分别进行类别预测和边界框位置及IoU(交并比)预测。这种解耦设计使得模型在处理复杂场景时,能够更精准地识别目标,并提高了分类的准确性。

值得注意的是,YOLOv8摒弃了传统的Anchor-Based(基于锚框)方法,转而采用Anchor-Free(无锚框)的方法。这一创新使得目标检测不再依赖于预设的锚框,而是将目标检测转化为关键点检测。通过这种方式,YOLOv8能够在没有锚框约束的情况下,灵活地适应不同大小和形状的目标,显著提高了模型的泛化能力。此外,YOLOv8在损失函数的设计上也进行了优化,取消了对象性分支,采用了更为精确的损失计算方法,使得模型在训练和推理过程中能够快速聚焦于目标附近的区域,提升了检测的准确性。

YOLOv8的这些创新使其在COCOval2017数据集上的表现显著优于之前的版本。通过综合运用多种先进的技术,YOLOv8在目标检测、图像分割和图像分类等任务中展现出卓越的性能。它不仅在精度和速度上超越了所有已知模型,还在处理小目标和高分辨率图像方面表现出色,为计算机视觉领域带来了新的机遇。

总的来说,YOLOv8作为YOLO系列的最新成员,通过对网络结构的全面优化与创新,提升了目标检测的效率和准确性。其在输入处理、特征提取、特征融合及输出预测等各个环节的改进,使得YOLOv8在实际应用中能够更好地应对复杂的视觉任务,展现出强大的适应性和灵活性。随着YOLOv8的广泛应用,目标检测技术的未来将更加光明,为各类智能应用提供强有力的支持。

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是对代码的核心部分进行保留和详细注释的版本:

python 复制代码
import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行的返回码,0 表示成功,非0表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 假设脚本在当前目录下

    # 调用函数运行脚本
    run_script(script_path)

代码分析与注释:

  1. 导入模块

    • sys:用于访问与 Python 解释器紧密相关的变量和函数。
    • subprocess:用于生成新进程、连接到它们的输入/输出/错误管道,并获得返回码。
  2. run_script 函数

    • 该函数接受一个脚本路径作为参数,并在当前 Python 环境中运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保脚本在正确的环境中运行。
    • 构建一个命令字符串,使用 streamlit 运行指定的脚本。
    • 使用 subprocess.run 执行构建的命令,并等待其完成。
    • 检查返回码,如果返回码不为0,表示脚本运行出错,并打印错误信息。
  3. 主程序块

    • 通过 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 指定要运行的脚本路径(这里假设脚本名为 web.py)。
    • 调用 run_script 函数,传入脚本路径以执行该脚本。

这样处理后,代码更加简洁,并且每个部分都有详细的中文注释,便于理解其功能和作用。

这个程序文件 ui.py 的主要功能是运行一个指定的 Python 脚本,具体来说是使用 Streamlit 框架来启动一个 Web 应用。程序的结构相对简单,主要包含了导入模块、定义函数以及执行主程序的逻辑。

首先,文件开头导入了几个必要的模块,包括 sysossubprocess。其中,sys 模块用于访问与 Python 解释器相关的变量和函数,os 模块提供了与操作系统交互的功能,而 subprocess 模块则用于创建新进程、连接到它们的输入/输出/错误管道,并获取它们的返回码。

接下来,程序定义了一个名为 run_script 的函数,该函数接受一个参数 script_path,表示要运行的脚本的路径。在函数内部,首先通过 sys.executable 获取当前 Python 解释器的路径。然后,构建一个命令字符串,使用 Streamlit 的命令行接口来运行指定的脚本。具体的命令格式是 "{python_path}" -m streamlit run "{script_path}",其中 {python_path}{script_path} 会被实际的路径替换。

函数接着使用 subprocess.run 方法来执行构建好的命令,并设置 shell=True 以便在 shell 中运行该命令。执行后,函数会检查返回码,如果返回码不为 0,表示脚本运行出错,程序会打印出相应的错误信息。

最后,在文件的主程序部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行后面的代码。在这里,首先调用 abs_path 函数(假设这个函数是用来获取文件的绝对路径)来指定要运行的脚本路径 web.py。然后,调用之前定义的 run_script 函数来运行这个脚本。

总的来说,这个 ui.py 文件的功能是为运行一个基于 Streamlit 的 Web 应用提供了一个简单的接口,能够方便地启动指定的 Python 脚本。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\hub\utils.py

以下是代码中最核心的部分,并附上详细的中文注释:

python 复制代码
import requests
from ultralytics.utils import TQDM, TryExcept, __version__, ENVIRONMENT, SETTINGS, RANK, ONLINE

def requests_with_progress(method, url, **kwargs):
    """
    使用指定的方法和URL进行HTTP请求,并可选地显示进度条。

    参数:
        method (str): 要使用的HTTP方法(例如 'GET', 'POST')。
        url (str): 要发送请求的URL。
        **kwargs (dict): 传递给底层 `requests.request` 函数的其他关键字参数。

    返回:
        (requests.Response): HTTP请求的响应对象。
    """
    progress = kwargs.pop('progress', False)  # 从kwargs中提取进度参数
    if not progress:
        return requests.request(method, url, **kwargs)  # 如果没有进度,直接发送请求

    # 如果需要显示进度条
    response = requests.request(method, url, stream=True, **kwargs)  # 以流的方式请求
    total = int(response.headers.get('content-length', 0) if isinstance(progress, bool) else progress)  # 获取总大小
    try:
        pbar = TQDM(total=total, unit='B', unit_scale=True, unit_divisor=1024)  # 初始化进度条
        for data in response.iter_content(chunk_size=1024):  # 按块读取内容
            pbar.update(len(data))  # 更新进度条
        pbar.close()  # 关闭进度条
    except requests.exceptions.ChunkedEncodingError:  # 处理连接中断的异常
        response.close()  # 关闭响应
    return response  # 返回响应对象

def smart_request(method, url, retry=3, timeout=30, thread=True, verbose=True, progress=False, **kwargs):
    """
    使用'requests'库进行HTTP请求,支持指数退避重试机制。

    参数:
        method (str): 请求使用的HTTP方法。
        url (str): 要请求的URL。
        retry (int, optional): 尝试重试的次数,默认为3。
        timeout (int, optional): 超时时间(秒),默认为30。
        thread (bool, optional): 是否在单独的线程中执行请求,默认为True。
        verbose (bool, optional): 是否在控制台打印信息,默认为True。
        progress (bool, optional): 是否在请求过程中显示进度条,默认为False。
        **kwargs (dict): 传递给请求函数的其他关键字参数。

    返回:
        (requests.Response): HTTP响应对象。
    """
    retry_codes = (408, 500)  # 仅对这些状态码进行重试

    @TryExcept(verbose=verbose)
    def func(func_method, func_url, **func_kwargs):
        """进行HTTP请求,支持重试和超时,带有可选的进度跟踪。"""
        r = None  # 响应对象
        t0 = time.time()  # 记录开始时间
        for i in range(retry + 1):
            if (time.time() - t0) > timeout:  # 超过超时时间则停止重试
                break
            r = requests_with_progress(func_method, func_url, **func_kwargs)  # 发起请求
            if r.status_code < 300:  # 如果状态码在2xx范围内,表示成功
                break
            # 处理错误信息
            try:
                m = r.json().get('message', 'No JSON message.')
            except AttributeError:
                m = 'Unable to read JSON.'
            if i == 0:  # 仅在第一次请求时打印信息
                if r.status_code in retry_codes:
                    m += f' Retrying {retry}x for {timeout}s.' if retry else ''
                if verbose:
                    LOGGER.warning(f'请求失败: {m} (状态码: {r.status_code})')
            time.sleep(2 ** i)  # 指数退避
        return r  # 返回响应对象

    args = method, url
    kwargs['progress'] = progress  # 将进度参数传递给函数
    if thread:
        threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True).start()  # 在新线程中执行
    else:
        return func(*args, **kwargs)  # 在当前线程中执行请求

代码核心部分解释

  1. requests_with_progress: 该函数用于发送HTTP请求,并在下载过程中显示进度条。它支持流式读取响应内容,并根据响应的内容长度更新进度条。

  2. smart_request: 该函数用于发送HTTP请求,支持重试机制和超时设置。它可以在请求失败时根据特定的状态码进行重试,并在控制台输出相关信息。该函数还支持在单独的线程中执行请求,以避免阻塞主线程。

这两个函数是代码的核心部分,主要用于处理HTTP请求和响应,支持进度显示和错误处理。

这个程序文件是一个用于Ultralytics YOLO(You Only Look Once)算法的工具类,主要涉及到与网络请求、事件分析和环境检测相关的功能。文件中包含了一些导入的库和模块,主要用于处理文件路径、网络请求、线程等操作。

首先,文件定义了一些常量,例如API的根地址和网页根地址,这些地址用于与Ultralytics Hub进行交互。接着,定义了几个函数来处理网络请求。其中,request_with_credentials函数专门用于在Google Colab环境中进行带有凭证的AJAX请求,确保在Colab中能够正确地进行身份验证。

requests_with_progress函数则是一个通用的HTTP请求函数,支持显示下载进度条。它根据请求的响应头部内容长度来动态更新进度条,方便用户了解下载的进度。

smart_request函数则是一个更为复杂的请求处理函数,支持重试机制和超时设置。它会在请求失败时根据设定的重试次数和超时限制进行多次尝试,并且可以选择在单独的线程中执行请求,以避免阻塞主线程。该函数还可以根据请求的状态码进行不同的处理,比如处理速率限制等。

接下来,文件定义了一个Events类,用于收集匿名事件分析数据。该类在初始化时会设置一些基本的元数据,包括Python版本、安装方式等信息。它还会根据设置和环境条件决定是否启用事件收集功能。通过调用该类的实例,可以将新的事件添加到事件列表中,并在达到速率限制时发送这些事件到指定的URL。

最后,文件在末尾创建了Events类的一个实例,准备在后续的操作中使用。整体来看,这个文件为YOLO算法的使用提供了网络请求和事件分析的基础功能,便于开发者在使用YOLO时进行数据收集和处理。

11.3 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr_init_.py

以下是代码中最核心的部分,并附上详细的中文注释:

python 复制代码
# 导入RTDETR模型类
from .model import RTDETR
# 导入RTDETR预测器类
from .predict import RTDETRPredictor
# 导入RTDETR验证器类
from .val import RTDETRValidator

# 定义模块的公开接口,指定可以被外部访问的类
__all__ = 'RTDETRPredictor', 'RTDETRValidator', 'RTDETR'

注释说明:

  1. 导入模块

    • from .model import RTDETR:从当前包中导入RTDETR模型类,RTDETR是一个用于目标检测的模型。
    • from .predict import RTDETRPredictor:从当前包中导入RTDETRPredictor类,负责使用RTDETR模型进行预测。
    • from .val import RTDETRValidator:从当前包中导入RTDETRValidator类,负责对模型的性能进行验证。
  2. 公开接口

    • __all__变量定义了当前模块中可以被外部访问的类。只有在__all__中列出的类,才能通过from module import *的方式被导入。这种做法有助于控制模块的可见性,避免不必要的内部实现被外部使用。

这个程序文件是一个Python模块的初始化文件,属于Ultralytics YOLO项目的一部分,具体是与RTDETR(Real-Time Detection Transformer)相关的功能模块。文件中首先包含了一条注释,说明了该项目使用的是AGPL-3.0许可证,意味着该代码是开源的,并且遵循相应的开源协议。

接下来,文件通过相对导入的方式引入了三个主要的类或功能:RTDETR、RTDETRPredictor和RTDETRValidator。这些类分别定义在同一目录下的不同文件中。RTDETR类通常是模型的核心实现,负责定义和训练检测模型;RTDETRPredictor类则用于进行预测,处理输入数据并返回模型的输出结果;RTDETRValidator类则用于验证模型的性能,通常在训练后评估模型的准确性和有效性。

最后,__all__变量定义了该模块的公共接口,指定了当使用from module import *语句时,哪些名称会被导入。在这里,__all__包含了三个类的名称,表明它们是该模块的主要功能部分,用户可以直接使用这些类而无需了解模块内部的实现细节。

总的来说,这个文件的主要作用是组织和导出与RTDETR相关的功能,使得其他模块或用户能够方便地使用这些功能。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\convnextv2.py

以下是代码中最核心的部分,并附上详细的中文注释:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class LayerNorm(nn.Module):
    """ 自定义的LayerNorm层,支持两种数据格式:channels_last(默认)和channels_first。
    channels_last对应输入形状为(batch_size, height, width, channels),
    而channels_first对应输入形状为(batch_size, channels, height, width)。
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        # 权重和偏置参数
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        # 根据数据格式选择不同的归一化方式
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)  # 计算均值
            s = (x - u).pow(2).mean(1, keepdim=True)  # 计算方差
            x = (x - u) / torch.sqrt(s + self.eps)  # 标准化
            x = self.weight[:, None, None] * x + self.bias[:, None, None]  # 应用权重和偏置
            return x

class Block(nn.Module):
    """ ConvNeXtV2的基本块,包含深度可分离卷积、归一化、激活函数等。
    
    Args:
        dim (int): 输入通道数。
        drop_path (float): 随机深度率,默认值为0.0。
    """
    def __init__(self, dim, drop_path=0.):
        super().__init__()
        # 深度可分离卷积
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
        self.norm = LayerNorm(dim, eps=1e-6)  # 归一化层
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # 1x1卷积(用线性层实现)
        self.act = nn.GELU()  # 激活函数
        self.pwconv2 = nn.Linear(4 * dim, dim)  # 1x1卷积(用线性层实现)
        self.drop_path = nn.Identity() if drop_path <= 0. else DropPath(drop_path)  # 随机深度

    def forward(self, x):
        input = x  # 保存输入
        x = self.dwconv(x)  # 深度可分离卷积
        x = x.permute(0, 2, 3, 1)  # 调整维度顺序
        x = self.norm(x)  # 归一化
        x = self.pwconv1(x)  # 第一个1x1卷积
        x = self.act(x)  # 激活
        x = self.pwconv2(x)  # 第二个1x1卷积
        x = x.permute(0, 3, 1, 2)  # 恢复维度顺序
        x = input + self.drop_path(x)  # 残差连接
        return x

class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2模型,包含多个特征分辨率阶段和残差块。
    
    Args:
        in_chans (int): 输入图像的通道数,默认值为3。
        num_classes (int): 分类头的类别数,默认值为1000。
        depths (tuple(int)): 每个阶段的块数,默认值为[3, 3, 9, 3]。
        dims (int): 每个阶段的特征维度,默认值为[96, 192, 384, 768]。
        drop_path_rate (float): 随机深度率,默认值为0。
    """
    def __init__(self, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], 
                 drop_path_rate=0.):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList()  # 存储下采样层
        # 初始卷积层
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        # 添加下采样层
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 存储特征分辨率阶段
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        # 添加多个残差块
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # 最后的归一化层
        self.head = nn.Linear(dims[-1], num_classes)  # 分类头

    def forward(self, x):
        res = []  # 存储每个阶段的输出
        for i in range(4):
            x = self.downsample_layers[i](x)  # 下采样
            x = self.stages[i](x)  # 残差块处理
            res.append(x)  # 保存输出
        return res  # 返回所有阶段的输出

代码说明:

  1. LayerNorm: 自定义的层归一化,支持不同的输入格式。
  2. Block: ConvNeXtV2的基本构建块,包含深度可分离卷积、归一化、激活函数和残差连接。
  3. ConvNeXtV2: 整个模型的定义,包含多个下采样层和特征分辨率阶段,最后通过线性层进行分类。

这个程序文件实现了ConvNeXt V2模型的结构,主要用于计算机视觉任务,特别是图像分类。文件中包含多个类和函数,下面对其进行逐步讲解。

首先,文件开头部分包含版权信息和导入必要的库,包括PyTorch和一些辅助函数。接着,定义了一个名为LayerNorm的类,该类实现了层归一化(Layer Normalization),支持两种数据格式:channels_lastchannels_first。这意味着输入数据可以是形状为(batch_size, height, width, channels)或(batch_size, channels, height, width)的张量。LayerNormforward方法根据数据格式对输入进行归一化处理。

接下来是GRN类,它实现了全局响应归一化(Global Response Normalization)层。该层通过计算输入的L2范数并进行归一化,来增强模型的表达能力。GRNforward方法计算输入的响应并进行归一化处理,最终返回经过调整的输出。

然后是Block类,代表ConvNeXt V2的基本构建块。它包含一个深度可分离卷积层、层归一化、点卷积(使用线性层实现)、激活函数(GELU)、GRN层和另一个点卷积层。Blockforward方法实现了这些操作,并通过残差连接将输入与输出相加,最后应用随机深度(Drop Path)技术。

ConvNeXtV2类是整个模型的主体,包含多个阶段和下采样层。构造函数中定义了输入通道数、分类头的类别数、每个阶段的块数和特征维度等参数。模型的初始层是一个卷积层和一个层归一化层,后续则是多个下采样层和特征提取阶段,每个阶段由多个Block组成。模型的forward方法依次通过下采样层和特征提取阶段处理输入,并将每个阶段的输出保存到列表中。

接下来,定义了一个update_weight函数,用于更新模型的权重。该函数会检查权重字典中的每个键是否在模型字典中,并且形状是否匹配,如果匹配则更新权重。

最后,文件中定义了一系列函数(如convnextv2_attoconvnextv2_femto等),这些函数用于创建不同规模的ConvNeXt V2模型,并可选择加载预训练权重。每个函数根据不同的深度和维度参数构建模型,并在提供权重时调用update_weight函数来加载权重。

总体而言,这个文件实现了ConvNeXt V2模型的结构和相关功能,适用于图像分类等任务,并提供了灵活的模型配置和权重加载机制。

11.5 code\ultralytics\models\sam\modules\transformer.py

以下是代码中最核心的部分,并附上详细的中文注释:

python 复制代码
import math
import torch
from torch import Tensor, nn

class Attention(nn.Module):
    """一个注意力层,允许在投影到查询、键和值之后对嵌入的大小进行下采样。"""

    def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int = 1) -> None:
        """
        初始化注意力模型,设置给定的维度和参数。

        Args:
            embedding_dim (int): 输入嵌入的维度。
            num_heads (int): 注意力头的数量。
            downsample_rate (int, optional): 内部维度下采样的因子,默认为1。
        """
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate  # 计算内部维度
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."  # 确保num_heads能整除内部维度

        # 定义线性层用于查询、键和值的投影
        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)  # 输出投影层

    @staticmethod
    def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
        """将输入张量分离为指定数量的注意力头。"""
        b, n, c = x.shape  # b: 批量大小, n: 序列长度, c: 特征维度
        x = x.reshape(b, n, num_heads, c // num_heads)  # 重新调整形状以分离头
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    @staticmethod
    def _recombine_heads(x: Tensor) -> Tensor:
        """将分离的注意力头重新组合为一个张量。"""
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)  # 转置以便于重新组合
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        """给定输入的查询、键和值张量,计算注意力输出。"""

        # 输入投影
        q = self.q_proj(q)  # 投影查询
        k = self.k_proj(k)  # 投影键
        v = self.v_proj(v)  # 投影值

        # 分离为多个头
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # 计算注意力
        _, _, _, c_per_head = q.shape  # 获取每个头的特征维度
        attn = q @ k.permute(0, 1, 3, 2)  # 计算注意力得分
        attn = attn / math.sqrt(c_per_head)  # 缩放
        attn = torch.softmax(attn, dim=-1)  # 应用softmax以获得注意力权重

        # 获取输出
        out = attn @ v  # 计算加权值
        out = self._recombine_heads(out)  # 重新组合头
        return self.out_proj(out)  # 通过输出投影层

代码核心部分解释:

  1. Attention类:这是一个实现注意力机制的类,包含了输入的查询、键和值的投影以及计算注意力的逻辑。
  2. 初始化方法:在初始化中定义了输入和输出的线性层,并确保注意力头的数量能够整除内部维度。
  3. 分离和重新组合头:这两个静态方法用于处理多头注意力机制,将输入张量分离成多个头,进行计算后再组合回去。
  4. 前向传播方法:实现了注意力计算的核心逻辑,包括输入的投影、注意力得分的计算、权重的应用以及最终输出的生成。

通过这个类,可以在深度学习模型中实现注意力机制,增强模型对输入信息的处理能力。

这个程序文件定义了一个名为 TwoWayTransformer 的神经网络模块,主要用于处理图像和查询点之间的双向注意力机制。它是一个专门的变换器解码器,能够同时关注输入图像和查询点,适用于目标检测、图像分割和点云处理等任务。

TwoWayTransformer 类的构造函数中,定义了一些重要的属性,包括变换器的层数(depth)、输入嵌入的通道维度(embedding_dim)、多头注意力的头数(num_heads)、MLP块的内部通道维度(mlp_dim)等。该类还创建了一个包含多个 TwoWayAttentionBlock 层的模块列表,这些层构成了变换器的主体结构。此外,还定义了一个最终的注意力层,用于将查询点的注意力应用到图像上,并使用层归一化来处理最终的查询。

forward 方法中,输入的图像嵌入和位置编码被展平并重新排列,以便进行后续处理。然后,准备查询和键,依次通过每个变换器层进行处理。最后,应用最终的注意力层,将查询点的注意力聚焦到图像上,并进行层归一化,返回处理后的查询和键。

TwoWayAttentionBlock 类实现了一个注意力块,包含自注意力和交叉注意力机制。该块由四个主要层组成:对稀疏输入的自注意力、稀疏输入对密集输入的交叉注意力、对稀疏输入的MLP块以及密集输入对稀疏输入的交叉注意力。在构造函数中,初始化了各个层,并设置了是否跳过第一层的位置信息编码。

forward 方法中,首先应用自注意力机制,然后是稀疏输入对密集输入的交叉注意力,接着是MLP块,最后是密集输入对稀疏输入的交叉注意力。每一步都进行了层归一化,以保持数值稳定性。

Attention 类定义了一个注意力层,允许在对查询、键和值进行投影后对嵌入进行下采样。构造函数中初始化了输入嵌入的维度、注意力头的数量以及下采样率。forward 方法计算给定查询、键和值的注意力输出,通过输入投影、分离头部、计算注意力和重组头部来实现。

整体来看,这个文件实现了一个复杂的双向变换器结构,能够有效地处理图像和查询点之间的关系,适用于多种计算机视觉任务。

11.6 train.py

以下是经过简化和注释的核心代码部分,主要集中在 YOLO 检测模型的训练过程中:

python 复制代码
import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    基于检测模型的训练类,继承自 BaseTrainer。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建 YOLO 数据集。

        参数:
            img_path (str): 图像文件夹的路径。
            mode (str): 模式,`train` 或 `val`,可以为每种模式自定义不同的数据增强。
            batch (int, optional): 批次大小,仅用于 `rect` 模式。默认为 None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在 DDP 中初始化数据集 *.cache 一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择新的图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 调整图像大小
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回 YOLO 检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从 CSV 文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. 构建数据集build_dataset 方法用于根据给定的图像路径和模式(训练或验证)构建 YOLO 数据集。
  2. 数据加载器get_dataloader 方法负责创建数据加载器,确保在分布式训练中只初始化一次数据集。
  3. 预处理批次preprocess_batch 方法对输入的图像批次进行归一化和缩放处理,以适应模型的输入要求。
  4. 获取模型get_model 方法用于创建并返回一个 YOLO 检测模型,可以选择性地加载预训练权重。
  5. 绘制训练样本和指标plot_training_samplesplot_metrics 方法用于可视化训练过程中的样本和性能指标。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的 Python 脚本,主要依赖于 Ultralytics 提供的库。程序中定义了一个 DetectionTrainer 类,该类继承自 BaseTrainer,并实现了一系列与目标检测训练相关的方法。

DetectionTrainer 类中,首先定义了 build_dataset 方法,用于构建 YOLO 数据集。该方法接收图像路径、模式(训练或验证)和批次大小作为参数,并利用 build_yolo_dataset 函数生成数据集。它还根据模型的步幅(stride)来确定图像的处理方式。

接着,get_dataloader 方法用于构建并返回数据加载器。它会根据训练或验证模式来设置数据集的加载方式,并在分布式训练的情况下确保数据集只初始化一次。此方法还会处理数据加载时的打乱(shuffle)设置。

preprocess_batch 方法负责对图像批次进行预处理,包括将图像缩放到适当的大小并转换为浮点数格式。它支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。这些信息是从数据集中提取的,并被附加到模型中,以便于后续的训练和验证。

get_model 方法用于返回一个 YOLO 检测模型实例,可以选择加载预训练权重。该方法确保模型的类别数量与数据集一致。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,该实例将用于评估模型在验证集上的表现。

label_loss_items 方法用于返回一个包含训练损失项的字典,这在目标检测中是必要的,因为需要跟踪不同类型的损失(如边界框损失、类别损失等)。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注信息,帮助可视化训练过程中的样本质量。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带有标签的训练图,以便于分析模型的性能和训练效果。

整体来看,这个文件提供了一个完整的训练框架,涵盖了数据集构建、数据加载、模型设置、训练过程监控和结果可视化等多个方面,适用于使用 YOLO 模型进行目标检测任务的开发和研究。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLO(You Only Look Once)目标检测算法的实现,包含多个模块和工具,旨在提供一个完整的训练、验证和推理框架。项目的核心功能包括数据集构建、模型定义、训练过程管理、损失计算、可视化工具以及多种模型架构的实现(如RTDETR、ConvNeXt V2等)。整体架构通过模块化设计,使得各个部分可以独立开发和维护,同时也便于用户根据需求进行扩展和修改。

文件功能整理表

文件路径 功能描述
ui.py 提供一个接口以运行基于Streamlit的Web应用,方便用户启动和使用YOLO模型。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\hub\utils.py 提供网络请求和事件分析功能,支持与Ultralytics Hub进行交互。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr\__init__.py 定义RTDETR模型的结构和接口,便于用户使用和扩展该模型。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\convnextv2.py 实现ConvNeXt V2模型的结构,支持图像分类等任务。
code\ultralytics\models\sam\modules\transformer.py 实现双向变换器结构,处理图像和查询点之间的关系,适用于目标检测和图像分割任务。
train.py 提供训练YOLO模型的框架,包括数据集构建、模型设置、训练过程监控和结果可视化等功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\kernel_warehouse.py 提供额外的模块和功能,可能用于特定的模型或任务,具体功能需进一步分析。
code\model.py 定义模型的基本结构和功能,可能包含不同模型的组合和调用接口。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\nas\__init__.py 定义神经架构搜索(NAS)相关的模型和功能,便于用户进行模型优化和选择。
code\ultralytics\utils\instance.py 提供与实例相关的工具函数,可能用于处理数据实例和模型实例化。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\dvc.py 实现与数据版本控制(DVC)相关的回调功能,支持模型训练过程中的数据管理。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\instance.py 提供与实例相关的工具函数,可能用于处理数据实例和模型实例化(重复,可能需要合并)。
code\ultralytics\utils\tal.py 提供与目标检测和图像处理相关的工具函数,可能用于数据增强、后处理等功能。

这个表格概述了每个文件的主要功能,帮助理解整个项目的结构和各个模块之间的关系。

注意:由于此博客编辑较早,上面"11.项目核心源码讲解(再也不用担心看不懂代码逻辑)"中部分代码可能会优化升级,仅供参考学习,完整"训练源码"、"Web前端界面"和"70+种创新点源码"以"13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)"的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

参考原始博客1: https://gitee.com/qunshansj/sugarcane-stem690

参考原始博客2: https://github.com/VisionMillionDataStudio/sugarcane-stem690

相关推荐
数据猎手小k10 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
忘梓.18 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
浮生如梦_1 天前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
m0_743414852 天前
【天线&其他】大疆无人机热成像人员目标检测系统源码&数据集全套:改进yolo11-bifpn-SDI
分类
spssau2 天前
多分类logistic回归分析案例教程
分类·数据挖掘·数据分析·回归·回归分析·logistic回归·spssau
快乐点吧2 天前
BERT 模型在句子分类任务中的作用分析笔记
笔记·分类·bert
Yeats_Liao2 天前
昇思大模型平台打卡体验活动:基于MindSpore实现GPT1影评分类
gpt·分类·数据挖掘
战国2 天前
卫星授时服务器,单北斗授时服务器,北斗卫星时钟服务器
服务器·网络·测试工具·分类
卡洛驰2 天前
交叉熵损失函数详解
人工智能·深度学习·算法·机器学习·ai·分类·概率论
C_Ryson2 天前
【机器学习】k最近邻分类
人工智能·python·机器学习·分类