【PyTorch】autograd与逻辑回归

autograd -- 自动求导系统

torch.autograd

autograd

torch.autograd.backward

功能:自动求取梯度

  • tensor:用于求导的张量,如loss
  • retain_graph:保存计算图
  • create_graph:创建导数计算图,用于高阶求导
  • grad_tensors:多梯度权重

torch.autograd.grad

功能:求取梯度

  • outputs:用于求导的张量,如loss
  • inputs:需要梯度的张量
  • create_graph:创建导数计算图,用于高阶求导
  • retain_graph:保存计算图
  • grad_outputs:多梯度权重

autograd小贴士

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad 默认为为 True
  3. 叶子结点不可执行 in-place

逻辑回归

Logistic Regression

基本概念

逻辑回归是线性二分类 模型

线性回归与逻辑回归的区别

线性回归是分析自变量x与因变量y(标量)之间关系的方法

逻辑回归是分析自变量x与因变量y(概率)之间关系的方法

机器学习模型训练步骤

PyTorch 构建模型需要 5 大步骤:

  • 数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。
  • 模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。
  • 损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。
  • 优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。
  • 迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。

参考链接

PyTorch 学习笔记

相关推荐
大数据在线10 分钟前
当向量数据库与云计算相遇:AI应用全面提速
人工智能·云计算·向量数据库·亚马逊云科技·zilliz
stevenzqzq12 分钟前
编程中如何与AI交互-结构化输入和理解确认机制
人工智能·交互
高峰君主1 小时前
生成式AI全栈入侵:当GPT-4开始自动编写你的Next.js路由时,人类开发者该如何重新定义存在价值?
人工智能
J先生x1 小时前
【开源项目】基于sherpa-onnx的实时语音识别系统 - LiveASR
人工智能·语音识别
火星资讯1 小时前
“兴火·燎原”总冠军诞生,云宏信息《金融高算力轻量云平台》登顶
人工智能·科技
whaosoft-1432 小时前
51c自动驾驶~合集37
人工智能
小技工丨2 小时前
详解大语言模型生态系统概念:lama,llama.cpp,HuggingFace 模型 ,GGUF,MLX,lm-studio,ollama这都是什么?
人工智能·语言模型·llama
陈奕昆2 小时前
大模型微调之LLaMA-Factory 系列教程大纲
人工智能·llama·大模型微调·llama-factory
上海云盾商务经理杨杨2 小时前
AI如何重塑DDoS防护行业?六大变革与未来展望
人工智能·安全·web安全·ddos
lanboAI2 小时前
基于卷积神经网络的蔬菜水果识别系统,resnet50,mobilenet模型【pytorch框架+python源码】
pytorch·python·cnn