【PyTorch】autograd与逻辑回归

autograd -- 自动求导系统

torch.autograd

autograd

torch.autograd.backward

功能:自动求取梯度

  • tensor:用于求导的张量,如loss
  • retain_graph:保存计算图
  • create_graph:创建导数计算图,用于高阶求导
  • grad_tensors:多梯度权重

torch.autograd.grad

功能:求取梯度

  • outputs:用于求导的张量,如loss
  • inputs:需要梯度的张量
  • create_graph:创建导数计算图,用于高阶求导
  • retain_graph:保存计算图
  • grad_outputs:多梯度权重

autograd小贴士

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad 默认为为 True
  3. 叶子结点不可执行 in-place

逻辑回归

Logistic Regression

基本概念

逻辑回归是线性二分类 模型

线性回归与逻辑回归的区别

线性回归是分析自变量x与因变量y(标量)之间关系的方法

逻辑回归是分析自变量x与因变量y(概率)之间关系的方法

机器学习模型训练步骤

PyTorch 构建模型需要 5 大步骤:

  • 数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。
  • 模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。
  • 损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。
  • 优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。
  • 迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。

参考链接

PyTorch 学习笔记

相关推荐
dixiuapp8 分钟前
校园后勤管理平台,如何选择与规划
大数据·人工智能·工单管理系统·院校工单管理系统·物业报修系统
DS随心转APP15 分钟前
ChatGPT和Gemini做表格
人工智能·ai·chatgpt·deepseek·ds随心转
Deepoch15 分钟前
Deepoc具身大模型机械狗:重新定义四足机器人智能交互新范式
人工智能·科技·机器人·具身智能·机器狗·deepoc·机械狗
wangsir.26 分钟前
C++接入AI大模型SDK--环境搭配
人工智能
papaofdoudou29 分钟前
从贝克莱的质问到ε-δ的胜利:微积分如何走向严密
人工智能
人工智能技术咨询.31 分钟前
【无标题】数字孪生与航空发动机结合的关键技术点
人工智能
deephub32 分钟前
知识图谱的可验证性:断言图谱的设计原理
人工智能·知识图谱·大语言模型·rag
小王努力学编程32 分钟前
LangChain——AI应用开发框架(核心组件2)
linux·服务器·c++·人工智能·python·langchain·信号
_Soy_Milk42 分钟前
【算法工程师】—— Pytorch
人工智能·pytorch·算法
bing.shao43 分钟前
文心大模型 5.0 正式版上线:用 Golang 解锁全模态 AI 工业化落地新路径
人工智能·golang·dubbo