【PyTorch】autograd与逻辑回归

autograd -- 自动求导系统

torch.autograd

autograd

torch.autograd.backward

功能:自动求取梯度

  • tensor:用于求导的张量,如loss
  • retain_graph:保存计算图
  • create_graph:创建导数计算图,用于高阶求导
  • grad_tensors:多梯度权重

torch.autograd.grad

功能:求取梯度

  • outputs:用于求导的张量,如loss
  • inputs:需要梯度的张量
  • create_graph:创建导数计算图,用于高阶求导
  • retain_graph:保存计算图
  • grad_outputs:多梯度权重

autograd小贴士

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad 默认为为 True
  3. 叶子结点不可执行 in-place

逻辑回归

Logistic Regression

基本概念

逻辑回归是线性二分类 模型

线性回归与逻辑回归的区别

线性回归是分析自变量x与因变量y(标量)之间关系的方法

逻辑回归是分析自变量x与因变量y(概率)之间关系的方法

机器学习模型训练步骤

PyTorch 构建模型需要 5 大步骤:

  • 数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。
  • 模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。
  • 损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。
  • 优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。
  • 迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。

参考链接

PyTorch 学习笔记

相关推荐
minhuan5 分钟前
大模型应用:多卡集群跑满14B模型:大模型推理算力应用实践.66
人工智能
golang学习记10 分钟前
VS Code 发布新终端
人工智能
无忧智库28 分钟前
未来已来:深度解析城市空中交通(UAM)垂直起降场(Vertiport)智能化配套设施建设方案(WORD)
人工智能
叫我:松哥30 分钟前
基于python强化学习的自主迷宫求解,集成迷宫生成、智能体训练、模型评估等
开发语言·人工智能·python·机器学习·pygame
2501_9449347333 分钟前
大专学历行政转型管理的必要性分析
人工智能
安全二次方security²40 分钟前
CUDA C++编程指南(7.5&6)——C++语言扩展之内存栅栏函数和同步函数
c++·人工智能·nvidia·cuda·内存栅栏函数·同步函数·syncthreads
汗流浃背了吧,老弟!43 分钟前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
Wu_Dylan1 小时前
液态神经网络系列(四) | 一条 PyTorch 从零搭建 LTC 细胞
pytorch·神经网络
老蒋每日coding1 小时前
从存证到智能:当碳链架构注入AI灵魂——区块链+AI融合新范式
人工智能·区块链
DN20201 小时前
靠谱的AI销售机器人哪家好
java·人工智能·机器人