【PyTorch】autograd与逻辑回归

autograd -- 自动求导系统

torch.autograd

autograd

torch.autograd.backward

功能:自动求取梯度

  • tensor:用于求导的张量,如loss
  • retain_graph:保存计算图
  • create_graph:创建导数计算图,用于高阶求导
  • grad_tensors:多梯度权重

torch.autograd.grad

功能:求取梯度

  • outputs:用于求导的张量,如loss
  • inputs:需要梯度的张量
  • create_graph:创建导数计算图,用于高阶求导
  • retain_graph:保存计算图
  • grad_outputs:多梯度权重

autograd小贴士

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad 默认为为 True
  3. 叶子结点不可执行 in-place

逻辑回归

Logistic Regression

基本概念

逻辑回归是线性二分类 模型

线性回归与逻辑回归的区别

线性回归是分析自变量x与因变量y(标量)之间关系的方法

逻辑回归是分析自变量x与因变量y(概率)之间关系的方法

机器学习模型训练步骤

PyTorch 构建模型需要 5 大步骤:

  • 数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。
  • 模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。
  • 损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。
  • 优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。
  • 迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。

参考链接

PyTorch 学习笔记

相关推荐
It's now24 分钟前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R31 分钟前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜1 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI1 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志1 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊1 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great2 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss2 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
yzx9910132 小时前
人工智能大模型新浪潮:五大突破性工具深度解析
人工智能