2024ICPC网络赛第一场C. Permutation Counting 4(线性代数)

题目链接

题目大意:给你n个范围[ l i , r i l_i,r_i li,ri],每个位置可以在这个范围中选择一个数,然后形成排列1到n的排列p。问p的所有情况的个数的奇偶性。

一个很妙的行列式转化,纯纯的线性代数。

首先,我们把p的总数表示出来。设矩阵 a i , j a_{i,j} ai,j,表示的是第 i 个 i个 i个位置的是否可以表示 j j j。则p的所有可能为 ∑ p Π i = 1 n a i , P i \sum\limits_{p}\mathop{\Pi}\limits_{i=1}^{n}a_{i,Pi} p∑i=1Πnai,Pi

其中p表示所有排列方式的总和。发现这是近似于矩阵a的行列式的值,不过去掉了其正负号。(在取模2的影响下,综合的加减没有影响)也就是说,只要我们求矩阵 a a a的行列式的值 m o d 2 mod\ 2 mod 2,就可以解出最终解。

根据矩阵的性质,矩阵的行列式 m o d 2 mod\ 2 mod 2为 0 0 0,等价于该矩阵 m o d 2 mod\ 2 mod 2下不可逆,也等价于该矩阵 m o d 2 mod\ 2 mod 2下的每一行的向量存在线性相关,也就是存在其中一个向量可以被其它向量表示。

至此,我们终于该题从看不懂的样子转化成了看起来像人话的子问题了。让我们解决这个子问题。每一个位置的向量[ l i , r i l_i,r_i li,ri]我们可以通过 r i − ( l i − 1 ) r_i-(l_{i}-1) ri−(li−1)表示,然后通过并查集判断出该向量能否通过其它向量表示。

cpp 复制代码
int n,m;

int pre[1000005];

int find (int x){
    if(pre[x]==x)return x;
    else return pre[x]=find(pre[x]);
}

void icealsoheat(){
    
    cin>>n;

    for(int i=0;i<=n;i++)pre[i]=i;

    int ans=1;

    for(int i=1;i<=n;i++){
        int l,r;
        cin>>l>>r;
        l=find(l-1);
        r=find(r);

        if(l==r){
            ans=0;
            // break;
        }
        else{
            pre[l]=r;
        }
    }

    cout<<ans<<"\n";

}
相关推荐
听风吟丶3 分钟前
Java 8 Stream API 高级实战:从数据处理到性能优化的深度解析
开发语言·python
hygge99932 分钟前
Spring Boot + MyBatis 整合与 MyBatis 原理全解析
java·开发语言·经验分享·spring boot·后端·mybatis
AA陈超1 小时前
ASC学习笔记0014:手动添加一个新的属性集
c++·笔记·学习·ue5
Run_Teenage2 小时前
C++:智能指针的使用及其原理
开发语言·c++·算法
Shylock_Mister3 小时前
Linux C线程编程全指南
linux·运维·c语言
码界奇点3 小时前
Java设计模式精讲从基础到实战的常见模式解析
java·开发语言·设计模式·java-ee·软件工程
权泽谦3 小时前
C语言控制台游戏教程:从零实现贪吃蛇(附源码+讲解)
c语言·stm32·游戏
四维碎片3 小时前
【Qt】配置安卓开发环境
android·开发语言·qt
西游音月3 小时前
(7)框架搭建:Qt实战项目之主窗体导航栏、状态栏
开发语言·qt
secondyoung3 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图