leetcode 力扣 221 最大正方形

动态规划

算法思路

  • 看下图,如果一个以(i, j)为右下角,4 * 4的正方形可以成立,那么以(i, j - 1), (i - 1, j - 1), (i - 1, j)为右下角的,3 * 3的三个正方形(红橙绿三个框)也必须成立。

  • 这里的边长只是举个例子,至于以(i, j)为右下角的正方形边长可以有多长,取决于左上方的三个正方形的边长,然后加1,这就是转移方程里dp[row][column] = Math.min(Math.min(dp[row][column - 1], dp[row - 1][column]), dp[row - 1][column - 1]) + 1 为什么加1的来源。

  • dp表的填表过程中,是从左往右,上到下逐个填的,也就是从左上角到右下角。所以用正方形的右下角,而不是左上角来讨论。

ini 复制代码
public int maximalSquare(char[][] matrix) {
        int rows = matrix.length;
        int columns = matrix[0].length;
        int[][] dp = new int[rows][columns];
        int maxSide = 0;

        for (int row = 0; row < rows; row++) {
            for (int column = 0; column < columns; column++) {
                if (matrix[row][column] == '1') {
                    if (row == 0 || column == 0) {
                        dp[row][column] = 1;
                    } else {
                        dp[row][column] = Math.min(Math.min(dp[row][column - 1], dp[row - 1][column]),
                                dp[row - 1][column - 1]) + 1;
                    }
                }

                maxSide = Math.max(maxSide, dp[row][column]);
            }
        }

        return maxSide * maxSide;
    }
相关推荐
cwj&xyp28 分钟前
Python(二)str、list、tuple、dict、set
前端·python·算法
xiaoshiguang35 小时前
LeetCode:222.完全二叉树节点的数量
算法·leetcode
爱吃西瓜的小菜鸡5 小时前
【C语言】判断回文
c语言·学习·算法
别NULL5 小时前
机试题——疯长的草
数据结构·c++·算法
TT哇5 小时前
*【每日一题 提高题】[蓝桥杯 2022 国 A] 选素数
java·算法·蓝桥杯
yuanbenshidiaos6 小时前
C++----------函数的调用机制
java·c++·算法
唐叔在学习6 小时前
【唐叔学算法】第21天:超越比较-计数排序、桶排序与基数排序的Java实践及性能剖析
数据结构·算法·排序算法
ALISHENGYA7 小时前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
数据结构·算法
chengooooooo7 小时前
代码随想录训练营第二十七天| 贪心理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
算法·leetcode·职场和发展
jackiendsc7 小时前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法