chatglm本地服务器大模型量化cpu INT4 INT8 half float运行、多卡多GPU运行改这一条指令就行啦!

一、ChatGLM3的几种推演方式

ChatGLM3常规方案的GPU推演中half和float是两种最常用的格式,half格式占13GB显存,float格式占40GB显存。此外还提供了几种GPU量化格式的推演:INT4和INT8量化。

CPU版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cpu().float()

INT4版本的ChatGLM3推演:(不是所有的硬件都支持INT4操作)

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(4).cuda()

INT8版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

half版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda()

float版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).float().cuda()

二、多卡推演

由于高精度的float推演形式需要较大的显存(40G),往往一张显卡很难满足其生产力需求,这时我们就可以使用多张显卡同时进行推演运算,而实现多卡推演的方式其实也特别简单。我们在这采取最简单的一种方式,就是在上述代码中加上一句device_map="auto"就可以了。

例:

python 复制代码
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").float()

这时我们将float量化的模型启动起来,新建一个terminal窗口输入nvidia-smi -l 2便可查看各显卡的使用情况:

bash 复制代码
nvidia-smi -l 2

就可以看到三张显卡都自动分配运行起来了以满足40G的运存要求:

相关推荐
xixixi7777744 分钟前
今日 AI 、通信、安全行业前沿日报(2026 年 2 月 4 日,星期三)
大数据·人工智能·安全·ai·大模型·通信·卫星通信
一切皆有可能!!2 小时前
昇腾atlas 300I duo部署Qwen3-8B完整实战:从选型到成功运行
人工智能·大模型·昇腾·大模型部署
Kaede62 小时前
提示dns服务器未响应,需要做哪些事?
运维·服务器
CRUD酱2 小时前
CentOS的yum仓库失效问题解决(换镜像源)
linux·运维·服务器·centos
ssxueyi2 小时前
ModelEngine + MCP:解锁 AI 应用的无限可能
人工智能·大模型·ai应用·ai开发·modelengine
We....2 小时前
鸿蒙与Java跨平台Socket通信实战
java·服务器·tcp/ip·arkts·鸿蒙
zly35002 小时前
VMware vCenter Converter Standalone 转换Linux系统,出现两个磁盘的处理
linux·运维·服务器
珠海西格2 小时前
1MW光伏项目“四可”装置改造:逆变器兼容性评估方法详解
大数据·运维·服务器·云计算·能源
General_G3 小时前
Linux中的信号
linux·运维·服务器
诸神缄默不语3 小时前
当无法直接用apt instll时,Linux如何离线安装软件包(以make为例)
linux·运维·服务器