chatglm本地服务器大模型量化cpu INT4 INT8 half float运行、多卡多GPU运行改这一条指令就行啦!

一、ChatGLM3的几种推演方式

ChatGLM3常规方案的GPU推演中half和float是两种最常用的格式,half格式占13GB显存,float格式占40GB显存。此外还提供了几种GPU量化格式的推演:INT4和INT8量化。

CPU版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cpu().float()

INT4版本的ChatGLM3推演:(不是所有的硬件都支持INT4操作)

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(4).cuda()

INT8版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

half版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda()

float版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).float().cuda()

二、多卡推演

由于高精度的float推演形式需要较大的显存(40G),往往一张显卡很难满足其生产力需求,这时我们就可以使用多张显卡同时进行推演运算,而实现多卡推演的方式其实也特别简单。我们在这采取最简单的一种方式,就是在上述代码中加上一句device_map="auto"就可以了。

例:

python 复制代码
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").float()

这时我们将float量化的模型启动起来,新建一个terminal窗口输入nvidia-smi -l 2便可查看各显卡的使用情况:

bash 复制代码
nvidia-smi -l 2

就可以看到三张显卡都自动分配运行起来了以满足40G的运存要求:

相关推荐
EasyCVR38 分钟前
萤石设备视频接入平台EasyCVR多品牌摄像机视频平台海康ehome平台(ISUP)接入EasyCVR不在线如何排查?
运维·服务器·网络·人工智能·ffmpeg·音视频
龙哥说跨境2 小时前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
pk_xz1234564 小时前
Shell 脚本中变量和字符串的入门介绍
linux·运维·服务器
小珑也要变强4 小时前
Linux之sed命令详解
linux·运维·服务器
海绵波波1074 小时前
Webserver(4.3)TCP通信实现
服务器·网络·tcp/ip
九河云6 小时前
AWS账号注册费用详解:新用户是否需要付费?
服务器·云计算·aws
Lary_Rock6 小时前
RK3576 LINUX RKNN SDK 测试
linux·运维·服务器
幺零九零零7 小时前
【计算机网络】TCP协议面试常考(一)
服务器·tcp/ip·计算机网络
云飞云共享云桌面8 小时前
8位机械工程师如何共享一台图形工作站算力?
linux·服务器·网络
幺零九零零11 小时前
【C++】socket套接字编程
linux·服务器·网络·c++