chatglm本地服务器大模型量化cpu INT4 INT8 half float运行、多卡多GPU运行改这一条指令就行啦!

一、ChatGLM3的几种推演方式

ChatGLM3常规方案的GPU推演中half和float是两种最常用的格式,half格式占13GB显存,float格式占40GB显存。此外还提供了几种GPU量化格式的推演:INT4和INT8量化。

CPU版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cpu().float()

INT4版本的ChatGLM3推演:(不是所有的硬件都支持INT4操作)

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(4).cuda()

INT8版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

half版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda()

float版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).float().cuda()

二、多卡推演

由于高精度的float推演形式需要较大的显存(40G),往往一张显卡很难满足其生产力需求,这时我们就可以使用多张显卡同时进行推演运算,而实现多卡推演的方式其实也特别简单。我们在这采取最简单的一种方式,就是在上述代码中加上一句device_map="auto"就可以了。

例:

python 复制代码
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").float()

这时我们将float量化的模型启动起来,新建一个terminal窗口输入nvidia-smi -l 2便可查看各显卡的使用情况:

bash 复制代码
nvidia-smi -l 2

就可以看到三张显卡都自动分配运行起来了以满足40G的运存要求:

相关推荐
OpenBayes8 分钟前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
Trouvaille ~12 分钟前
【Linux】UDP Socket编程实战(一):Echo Server从零到一
linux·运维·服务器·网络·c++·websocket·udp
嵌入小生00718 分钟前
Shell | 命令、编程及Linux操作系统的基本概念
linux·运维·服务器
PPIO派欧云44 分钟前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
-Try hard-1 小时前
Linuv软件编程 | Shell命令
linux·运维·服务器
释怀不想释怀1 小时前
Linux快捷键,软件安装启动
linux·运维·服务器
Hello World . .2 小时前
Linux:软件编程
linux·运维·服务器·vim
路由侠内网穿透.2 小时前
本地部署代码托管解决方案 Gitea 并实现外部访问( Windows 版本)
运维·服务器·网络协议·gitea
serve the people3 小时前
python环境搭建 (十三) tenacity重试库
服务器·python·php
jake don3 小时前
GPU服务器搭建大模型指南
服务器·人工智能