chatglm本地服务器大模型量化cpu INT4 INT8 half float运行、多卡多GPU运行改这一条指令就行啦!

一、ChatGLM3的几种推演方式

ChatGLM3常规方案的GPU推演中half和float是两种最常用的格式,half格式占13GB显存,float格式占40GB显存。此外还提供了几种GPU量化格式的推演:INT4和INT8量化。

CPU版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cpu().float()

INT4版本的ChatGLM3推演:(不是所有的硬件都支持INT4操作)

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(4).cuda()

INT8版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

half版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda()

float版本的ChatGLM3推演:

python 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).float().cuda()

二、多卡推演

由于高精度的float推演形式需要较大的显存(40G),往往一张显卡很难满足其生产力需求,这时我们就可以使用多张显卡同时进行推演运算,而实现多卡推演的方式其实也特别简单。我们在这采取最简单的一种方式,就是在上述代码中加上一句device_map="auto"就可以了。

例:

python 复制代码
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").float()

这时我们将float量化的模型启动起来,新建一个terminal窗口输入nvidia-smi -l 2便可查看各显卡的使用情况:

bash 复制代码
nvidia-smi -l 2

就可以看到三张显卡都自动分配运行起来了以满足40G的运存要求:

相关推荐
富贵00718 分钟前
解码器(Decoder)与编码器(Encoder)的简明解析
大模型·transformer
筱谙1 小时前
BES BLE低功耗蓝牙技术实现分析
服务器·网络·网络协议
RisunJan1 小时前
Linux命令-last(查看用户登录历史)
linux·服务器·网络
weixin_307779132 小时前
面向通用矩阵乘法(GEMM)负载的GPU建模方法:原理、实现与多场景应用价值
运维·人工智能·线性代数·矩阵·gpu算力
2301_780789662 小时前
2025年UDP洪水攻击防护实战全解析:从T级流量清洗到AI智能防御
服务器·网络·人工智能·网络协议·安全·web安全·udp
不爱吃糖的程序媛2 小时前
OpenHarmony仓颉文档:全场景应用开发指南
运维·服务器
深耕AI2 小时前
【wordpress系列教程】07 网站迁移与备份
运维·服务器·前端·数据库
咕噜企业分发小米2 小时前
腾讯云多云管理工具如何与第三方合规工具集成以支持持续合规?
运维·服务器·游戏
这周也會开心3 小时前
云服务器部署项目
运维·服务器
min1811234563 小时前
软件升级全流程步骤详解
android·java·服务器