关于LlamaIndex 的几种索引方式介绍

每个索引的工作原理

本指南介绍每个索引如何与图表配合使用。

一些术语:

  • Node :对应于 Document 中的一段文本。LlamaIndex 接收 Document 对象,并在内部将它们解析/分块为 Node 对象。
  • Response Synthesis:我们的模块,在给定检索到的 Node 的情况下合成响应。您可以了解如何指定不同的响应模式。

Summary Index (摘要索引)(以前称为 List Index)

摘要索引只是将 Node 存储为顺序链。

查询

在查询期间,如果未指定其他查询参数,则 LlamaIndex 只会将列表中的所有 Node 加载到 我们的响应合成模块。

摘要索引确实提供了多种查询摘要索引的方法,从基于嵌入的查询中查询 将获取前 K 个邻居,或者添加关键字过滤器,如下所示:

Vector Store Index(向量存储索引)

Vector Store 索引将每个 Node 和相应的嵌入存储在 Vector Store 中。

查询

查询 vector store 索引涉及获取前 k 个最相似的 Node,并将 这些添加到我们的 Response Synthesis 模块中。

Tree Index(树索引)

树索引从一组 Node(成为此树中的叶节点)构建分层树。

查询

查询树索引涉及从根节点向下遍历 到叶节点。默认情况下,() 会生成一个查询 在给定父节点的情况下选择一个子节点。如果 ,则查询 每个级别选择两个子节点。child_branch_factor=1child_branch_factor=2

Keyword Table Index(关键字表索引)

keyword 表索引从每个 Node 中提取关键字,并从 each 关键字添加到该关键字的相应 Node 中。

查询

在查询期间,我们从查询中提取相关关键字,并将这些关键字与预先提取的 Node 关键字来获取相应的 Node。提取的 Node 将传递给我们的 Response Synthesis 模块。

Property Graph Index (属性图索引)

Property Graph Index 的工作原理是首先构建一个包含标记节点和关系的知识图谱。此图的构造是高度可定制的,从让 LLM 提取它想要的任何东西,到使用严格的架构提取,甚至实现您自己的提取模块。

或者,还可以嵌入节点以供以后检索。

您还可以跳过创建,并使用 Neo4j 等集成连接到现有知识图谱。

查询

查询 Property Graph 索引也非常灵活。检索的工作原理是使用多个子检索器并组合结果。默认情况下,使用 keyword + synoymn expanasion 以及向量检索(如果您的图形是嵌入的)来检索相关的三元组。

除了检索到的三元组之外,您还可以选择包含源文本(不适用于在 LlamaIndex 之外创建的图形)。

Property Graphs 完整指南中了解更多信息。

相关推荐
梧桐树04293 小时前
python常用内建模块:collections
python
Dream_Snowar3 小时前
速通Python 第三节
开发语言·python
蓝天星空4 小时前
Python调用open ai接口
人工智能·python
jasmine s5 小时前
Pandas
开发语言·python
郭wes代码5 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
leaf_leaves_leaf5 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零15 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
404NooFound5 小时前
Python轻量级NoSQL数据库TinyDB
开发语言·python·nosql
天天要nx5 小时前
D102【python 接口自动化学习】- pytest进阶之fixture用法
python·pytest
minstbe5 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机