深度学习:(八)深层神经网络参数与流程

深层神经网络

符号规定

  • L L L :表示神经网络的层数;
  • l l l :表示第几层;
  • n [ l ] n^{[~l~]} n[ l ] :表示第 l l l 层的节点数;
  • a [ l ] a^{[~l~]} a[ l ] :表示第 l l l 层中的激活函数(泛指);
  • a [ l ] = g [ l ] ( z [ l ] ) a^{[~l~]}=g^{[~l~]}(z^{[~l~]}) a[ l ]=g[ l ](z[ l ]) :表示第 l l l 层中的激活函数(泛指);
  • W [ l ] W^{[~l~]} W[ l ] :表示第 l l l 层的参数 w w w 的集合;
  • b [ l ] b^{[~l~]} b[ l ] :表示第 l l l 层的参数 b b b 的集合。

前向传播和反向传播都类似之前的笔记。

流程图

前向传播有输入数据 x x x ,反向传播的输入数据是 d a [ L ] da^{[~L~]} da[ L ] ,即输出层(第 L L L 层)的输出,在向量化代码中,直接展示出来的结果是损失函数 L ( y ^ , y ) L(\widehat{y},y) L(y ,y) ,

因为 d a [ L ] = − y a + 1 − y 1 − a da^{[~L~]}=-\frac{y}{a}+\frac{1-y}{1-a} da[ L ]=−ay+1−a1−y ,而 L ( y ^ , y ) L(\widehat{y},y) L(y ,y) 对 y ^ \widehat{y} y ( a a a)的导数,正好等于这个结果。因此将损失函数对 y ^ \widehat{y} y ( a a a)求导,可得出 d a [ L ] da^{[~L~]} da[ L ] ,然后代入反向传播链的输入,开始迭代,如上图所示。

向量化时 d a [ L ] da^{[~L~]} da[ L ] 需改为 d A [ L ] dA^{[~L~]} dA[ L ] , d A [ L ] = ( d a [ 1 ] , d a [ 2 ] , . . . , d a [ m ] ) dA^{[~L~]}=(da^{[~1~]},da^{[~2~]},...,da^{[~m~]}) dA[ L ]=(da[ 1 ],da[ 2 ],...,da[ m ]) 。

为何 z [ l ] z^{[~l~]} z[ l ]是反向传播的一个输入参数

∵ a [ l ] = σ ( z [ l ] ) = σ ( W [ l ] a [ l − 1 ] + b [ l ] ) ∵ d L d a [ l − 1 ] = d L d a [ l ] ⋅ d a [ l ] d a [ l − 1 ] = d a [ l ] ⋅ σ ′ ( W [ l ] a [ l − 1 ] + b [ l ] ) W [ l ] ⋅ d a [ l − 1 ] ∴ d a [ l − 1 ] = d a [ l ] ⋅ σ ′ ( z [ l ] ) W [ l ] ⋅ d a [ l − 1 ] \begin{align*} ∵a^{[~l~]}=\sigma&(z^{[~l~]})=\sigma(W^{[~l~]}a^{[~l-1~]}+b^{[~l~]})\\ ∵\frac{dL}{da^{[~l-1~]}}&=\frac{dL}{da^{[~l~]}}·\frac{da^{[~l~]}}{da^{[~l-1~]}}\\ &=da^{[~l~]}·\sigma^{'}(W^{[~l~]}a^{[~l-1~]}+b^{[~l~]})W^{[~l~]}·da^{[~l-1~]}\\ ∴da^{[~l-1~]}&=da^{[~l~]}·\sigma^{'}(z^{[~l~]})W^{[~l~]}·da^{[~l-1~]} \end{align*} ∵a[ l ]=σ∵da[ l−1 ]dL∴da[ l−1 ](z[ l ])=σ(W[ l ]a[ l−1 ]+b[ l ])=da[ l ]dL⋅da[ l−1 ]da[ l ]=da[ l ]⋅σ′(W[ l ]a[ l−1 ]+b[ l ])W[ l ]⋅da[ l−1 ]=da[ l ]⋅σ′(z[ l ])W[ l ]⋅da[ l−1 ]

核对矩阵的维度

向量化前的单个样本
  • 前向传播:

    W [ l ] W^{[~l~]} W[ l ] :维度为 ( n [ l ] , n [ l − 1 ] ) (n^{[~l~]},n^{[~l-1~]}) (n[ l ],n[ l−1 ]) ;

    z [ l ] z^{[~l~]} z[ l ] :维度为 ( n [ l ] , 1 ) (n^{[~l~]},1) (n[ l ],1) ;

    a [ l ] a^{[~l~]} a[ l ] :维度为 ( n [ l ] , 1 ) (n^{[~l~]},1) (n[ l ],1) ;

    b [ l ] b^{[~l~]} b[ l ] :维度为 ( n [ l ] , 1 ) (n^{[~l~]},1) (n[ l ],1) 。

  • 反向传播:

    d W [ l ] dW^{[~l~]} dW[ l ] 和 W [ l ] W^{[~l~]} W[ l ] 同维度;

    d b [ l ] db^{[~l~]} db[ l ] 和 b [ l ] b^{[~l~]} b[ l ] 同维度。

向量化后的整个训练集
  • 前向传播:

    X ( A [ 0 ] ) X(A^{[~0~]}) X(A[ 0 ]) :维度为 ( n [ 0 ] , m ) (n^{[~0~]},m) (n[ 0 ],m) ;

    W [ l ] W^{[~l~]} W[ l ] :维度为 ( n [ l ] , n [ l − 1 ] ) (n^{[~l~]},n^{[~l-1~]}) (n[ l ],n[ l−1 ]) ;

    b [ l ] b^{[~l~]} b[ l ] :维度为 ( n [ l ] , 1 ) (n^{[~l~]},1) (n[ l ],1) ;# 要广播

    Z [ l ] Z^{[~l~]} Z[ l ] :维度为 ( n [ l ] , m ) (n^{[~l~]},m) (n[ l ],m) ;

    A [ l ] A^{[~l~]} A[ l ] :维度为 ( n [ l ] , m ) (n^{[~l~]},m) (n[ l ],m) 。

  • 反向传播:

    d W [ l ] dW^{[~l~]} dW[ l ] 和 W [ l ] W^{[~l~]} W[ l ] 同维度;

    d b [ l ] db^{[~l~]} db[ l ] 和 b [ l ] b^{[~l~]} b[ l ] 同维度;

    d Z [ l ] dZ^{[~l~]} dZ[ l ] 和 Z [ l ] Z^{[~l~]} Z[ l ] 同维度;

    d A [ l ] dA^{[~l~]} dA[ l ] 和 A [ l ] A^{[~l~]} A[ l ] 同维度。

超参数:

能控制参数 w w w 和 b b b 的参数,需人为设置。

  • 学习率 α \alpha α ;
  • 梯度下降法循环次数;
  • 隐层数 L L L ;
  • 隐藏层的单元(节点)数;
  • 激活函数类型。

这些参数需要不断测试,实时评估损失函数(横坐标越大,纵坐标越小)。

相关推荐
l1t1 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华2 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu3 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师4 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8285 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成6 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃6 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)6 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao6 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶