python画图|放大和缩小图像

在较多的画图场景中,需要对图像进行局部放大,掌握相关方法非常有用,因此我们很有必要一起学习

【1】官网教程

首先是进入官网教程,找到学习资料:

https://matplotlib.org/stable/gallery/subplots_axes_and_figures/axes_margins.html#sphx-glr-gallery-subplots-axes-and-figures-axes-margins-py

在这里可以看到好看的放大和缩小视图。

【2】代码解读

引入计算模块numpy和画图模块matplotlib:

复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

from matplotlib.patches import Polygon

然后自定义函数:

复制代码
def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)  #定义子函数

之后定义自变量:

复制代码
t1 = np.arange(0.0, 3.0, 0.01) #定义变量

再之后定义画图:

复制代码
ax1 = plt.subplot(212) #定义2行1列第2个图形
ax1.margins(0.05)           # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1)) #输出图形

ax2 = plt.subplot(221) #定义2行2列第1个图形
ax2.margins(2, 2)           # Values >0.0 zoom out
ax2.plot(t1, f(t1))
ax2.set_title('Zoomed out')

ax3 = plt.subplot(222) #定义2行2列第2个图形
ax3.margins(x=0, y=-0.25)   # Values in (-0.5, 0.0) zooms in to center
ax3.plot(t1, f(t1))
ax3.set_title('Zoomed in')

最后输出图形:

复制代码
plt.show()

输出图形为:

++图1++

由图1可见,通过调节margins()函数中的值,调节函数曲线和X轴Y轴的距离,进而实现图像的放大和缩小。

【3】margins()和xlim()函数/ylim()函数效果对比

前在述学习过程中,已经多次使用xlim()函数和ylim()函数来设置作标轴范围,进而实现对图像的大小进行缩放,未进行对比,将margins()和xlim()函数/ylim()函数效果进行同时输出,设置画图程序如下:

复制代码
ax1 = plt.subplot(311) #定义3行1列第1个图形
ax1.margins(0.05)           # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1)) #输出图形
ax1.set_title('Zoomed',y=0.68)

ax2 = plt.subplot(312) #定义3行1列第2个图形
ax2.set_ylim(-0.65, 1.1) # Values >0.0 zoom out
ax2.plot(t1, f(t1),color='blue')
ax2.set_title('Set_ylim',y=0.68)
ax2.set_facecolor((0.66,0.36,0.86))

ax3 = plt.subplot(313) #定义3行1列第3个图形
#ax3.margins(x=0, y=-0.25)   # Values in (-0.5, 0.0) zooms in to center
ax3.plot(t1, f(t1),color='green')
ax3.set_title('Origin',y=0.68)
ax3.set_facecolor('#eafff5')

由代码可见,ax1使用了margins()函数,ax2使用了set_ylim()函数,ax3未做限制是默认输出。

运行代码后的结果为:

++图2++

由图2可见,margins()和xlim()函数/ylim()函数效果都可以实现良好的输出效果。

如果不想进行限制,默认输出效果同样不错。

实际画图过程中,可根据需要灵活使用函数或者不使用函数以实现画图目的。

至此的完整代码为:

python 复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

from matplotlib.patches import Polygon


def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)  #定义子函数


t1 = np.arange(0.0, 3.0, 0.01) #定义变量

ax1 = plt.subplot(311) #定义3行1列第1个图形
ax1.margins(0.95)           # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1)) #输出图形
ax1.set_title('Zoomed',y=0.68)

ax2 = plt.subplot(312) #定义3行1列第2个图形
ax2.set_ylim(-0.65, 1.1) # Values >0.0 zoom out
ax2.plot(t1, f(t1),color='blue')
ax2.set_title('Set_ylim',y=0.68)
ax2.set_facecolor((0.66,0.36,0.86))

ax3 = plt.subplot(313) #定义3行1列第3个图形
#ax3.margins(x=0, y=-0.25)   # Values in (-0.5, 0.0) zooms in to center
ax3.plot(t1, f(t1),color='green')
ax3.set_title('Origin',y=0.68)
ax3.set_facecolor('#eafff5')

plt.show()

【4】尝试在图形中增开缩小试图

前面已经掌握了对图形进行缩小和方法的方法,有时候需要在一个稍大的图形中,再增加一个缩略图形,为此有必要继续探索。

下述链接给出了简单的教程,点击可一步直达:

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.inset_axes.html#matplotlib.axes.Axes.inset_axes

基于此我们尝试给margins()函数输出图形增加一个缩略图,增加下述代码:

复制代码
axins=ax1.inset_axes((0.85,0.5,0.15,0.5))
axins.plot(t1,f(t1))

输出图形为:

图3

图3即为增加缩略图后的图形。

此时的完整代码为:

python 复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

from matplotlib.patches import Polygon


def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)  #定义子函数


t1 = np.arange(0.0, 3.0, 0.01) #定义变量

ax1 = plt.subplot(311) #定义3行1列第1个图形
ax1.margins(0.95)           # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1)) #输出图形
ax1.set_title('Zoomed',y=0.68)
axins=ax1.inset_axes((0.85,0.5,0.15,0.5))
axins.plot(t1,f(t1))

ax2 = plt.subplot(312) #定义3行1列第2个图形
ax2.set_ylim(-0.65, 1.1) # Values >0.0 zoom out
ax2.plot(t1, f(t1),color='blue')
ax2.set_title('Set_ylim',y=0.68)
ax2.set_facecolor((0.66,0.36,0.86))

ax3 = plt.subplot(313) #定义3行1列第3个图形
#ax3.margins(x=0, y=-0.25)   # Values in (-0.5, 0.0) zooms in to center
ax3.plot(t1, f(t1),color='green')
ax3.set_title('Origin',y=0.68)
ax3.set_facecolor('#eafff5')

plt.show()

【5】局部放大和整体缩小

如果主要想展示局部放大图,同时展示整体缩略图,可以如下设置:

python 复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

from matplotlib.patches import Polygon


def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)  #定义子函数


t1 = np.arange(0.0, 3.0, 0.01) #定义变量

fig , ax1 = plt.subplots( ) #定义3行1列第1个图形
ax1.margins(0.05)           # Default margin is 0.05, value 0 means fit
ax1.plot(t1, f(t1)) #输出图形
ax1.set_title('Zoomed',y=0.68)
axins=ax1.inset_axes((0.85,0.5,0.15,0.5))
axins.plot(t1,f(t1))


plt.show()

输出图像为:

++图4++

图4为常规的图像,大图和小图都是整体图。

继续调节,将margins()进行修改:

复制代码
ax1.margins(x=-0.25,y=-0.25)           # Default margin is 0.05, value 0 means fit
ax1.set_ylim(-0.25,0.5)

在修改margins()时,负数可以实现图像放大,设置set_ylim()可以更好地表达图像。

输出图像为:

++图5++

python 复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

from matplotlib.patches import Polygon


def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)  #定义子函数


t1 = np.arange(0.0, 3.0, 0.01) #定义变量

fig , ax1 = plt.subplots( ) #定义3行1列第1个图形
ax1.margins(x=-0.25,y=-0.25)           # Default margin is 0.05, value 0 means fit
ax1.set_ylim(-0.25,0.5)
ax1.plot(t1, f(t1)) #输出图形
ax1.set_title('Zoomed',y=0.68)
axins=ax1.inset_axes((0.85,0.5,0.15,0.5))
axins.plot(t1,f(t1))


plt.show()

继续对代码稍作修改:

复制代码
fig , ax1 = plt.subplots( ) #定义3行1列第1个图形
ax1.margins(x=-0.25,y=-0.25)           # Default margin is 0.05, value 0 means fit
ax1.set_ylim(-0.25,0.5)
ax1.plot(t1, f(t1)) #输出图形
ax1.set_title('Zoomed')
axins=ax1.inset_axes((0.8,0.7,0.2,0.3))
axins.plot(t1,f(t1))

输出图像优化为:

++图6++

可见图6更好地进行了表达。

【6】总结

学习了图像大放大和缩小技巧,探索了将放大和缩小图放在同一个坐标轴内的技巧。

相关推荐
databook7 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar8 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户8356290780518 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_8 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机15 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机16 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机16 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机16 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i16 小时前
drf初步梳理
python·django
每日AI新事件16 小时前
python的异步函数
python