【machine learning-17-分类(逻辑回归sigmod)】

分类问题

先说一下什么是分类问题,举个例子:

判定一封邮件是否是垃圾邮件;

判定图片是不是一直猫;

等等

这些问题的答案都是有限的,而不像是线性回归,是存在无限可能的不确定值。

这种问题就是分类问题,那么线性回归可以解决分类问题么?

答案是可以,但是效果可能不太好

线性回归解决分类问题的弊端

比如上面是检测肿瘤是否良性的一个数据集,有蓝色和红色这两种数据,分别表示不同的结果,是或者不是(0或者1标识),如果线性回归来拟合这个数据的话,可能用图中那条蓝色直线来表示,然后我们定一个阈值,比如y轴0.5以上的就表示非良性,那么这时候x轴位置的点就表示临界点了。输入在X左边的为0,否则为1。现在看起来是没问题的。但是如果数据集增加一个下图中的数据呢?

那样拟合的直线就应该像图中绿色这条线,这时候如果阈值还是0.5,然后就会发现水平轴的临界值就变了,这时候这条直线x轴这个临界点左边这两个红色数据跟右边的两个红色数据已经不是同一种类了。

显然这个结果不是我们想要的。

怎么解决这个问题,就是逻辑回归,虽然也是回归,但其实跟线性回归没关系,不要误解,这其实是一个二分类算法。

sigmod 逻辑回归

sigmod 函数如下:

它的函数图像如下

注意观察下,这个函数值总是在0和1之间,正好与二分类的算法要求输出0和1的结果相对应,二分类的算法是在线性回归基础上再加上一个sigmode,如下:

python 复制代码
sigmod(f(x))

至于深层次的详细解读会在下一节中介绍

相关推荐
机器学习之心1 小时前
PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测
支持向量机·分类·多特征分类预测·pca-svm·主成分分析结合支持向量机
hai405877 小时前
量子机器学习:颠覆性的前沿技术
人工智能·机器学习·量子计算
武子康8 小时前
大数据-205 数据挖掘 机器学习理论 - 线性回归 最小二乘法 多元线性
java·大数据·人工智能·python·机器学习·数据挖掘
方方爱学习10 小时前
解决一键重命名所有文件问题
人工智能·深度学习·yolo·机器学习
pen-ai10 小时前
【机器学习】27. 马尔科夫链和隐马模型HMM
人工智能·学习·机器学习
pen-ai12 小时前
【机器学习】19. CNN 卷积神经网络 Convolutional neural network
人工智能·深度学习·机器学习·计算机视觉·cnn
云空12 小时前
AI工具列表
大数据·人工智能·深度学习·学习·机器学习
pen-ai12 小时前
【机器学习】24. 聚类-层次式 Hierarchical Clustering
人工智能·深度学习·算法·机器学习·数据挖掘·聚类
爱数学的程序猿15 小时前
深入解密 K 均值聚类:从理论基础到 Python 实践
人工智能·机器学习·支持向量机
qgh122317 小时前
Straightforward Layer-wise Pruning for More Efficient Visual Adaptation
人工智能·机器学习·剪枝