CuML + Cudf (RAPIDS) 加速python数据分析脚本

如果有人在用Nvidia RAPIDS加速pandas和sklearn等库,请看我这个小示例,可以节省你大量时间。

1. 创建环境

请使用uv,而非conda/mamba。

shell 复制代码
# install uv if not yet

curl -LsSf https://astral.sh/uv/install.sh | sh

uv init data_gpu

cd data_gpu

uv venv --python 3.12

source .venv/bin/activate

# 大的要来了

# 使用阿里云开源镜像

uv pip install \

  -i http://mirrors.aliyun.com/pypi/simple/ \

  --extra-index-url=https://pypi.nvidia.com \

  "cudf-cu12==25.4.*" "cuml-cu12==25.4.*" \

  "polars[pandas,numpy,pyarrow,style,plot,excel,gpu]" \

  polars-u64-idx scikit-learn scipy statsmodels tqdm ipykernel jupyter --prerelease=allow --index-strategy unsafe-best-match

2. 在脚本中启用

python 复制代码
import cudf.pandas
cudf.pandas.install()
from cuml.accel.core import install as cuml_install
cuml_install(disable_uvm=False)
import pandas as pd
import polars as pl
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

现在,pandas, sklearn, polars都有GPU加持。但是并非所有函数都受支持。具体情况自己去看官方文档。

另外,不要使用 python -m cuml.accel my_script.py,这样你就无法向my_script.py传自己的参数。

相关推荐
幻云20102 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
bst@微胖子2 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
无风听海2 小时前
CBOW 模型中的输出层
人工智能·机器学习
仰望星空@脚踏实地2 小时前
本地Python脚本是否存在命令注入风险
python·datakit·命令注入
LOnghas12113 小时前
果园环境中道路与树木结构检测的YOLO11-Faster语义分割方法
python
2501_944526425 小时前
Flutter for OpenHarmony 万能游戏库App实战 - 蜘蛛纸牌游戏实现
android·java·python·flutter·游戏
王锋(oxwangfeng)5 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
飞Link5 小时前
【Django】Django的静态文件相关配置与操作
后端·python·django
小鸡吃米…5 小时前
机器学习中的分类算法
人工智能·机器学习·分类
Ulyanov6 小时前
从桌面到云端:构建Web三维战场指挥系统
开发语言·前端·python·tkinter·pyvista·gui开发