【PyTorch】图像目标检测

图像目标检测是什么

Object Detection

判断图像中目标位置

目标检测两要素

  1. 分类:分类向量 [p0, ..., pn]
  2. 回归:回归边界框 [x1, y1, x2, y2]

模型如何完成目标检测

将3D张量映射到两个张量

  1. 分类张量:shape为 [N, c+1]
  2. 边界框张量:shape为 [N, 4]

Recent Advances in Deep Learning for Object Detection

边界框数量N如何确定?

传统方法------滑动窗策略

缺点:

  1. 重复计算量大
  2. 窗口大小难确定

利用卷积减少重复计算

重要概念:特征图一个像素 对应原图一块区域

目标检测模型简介

按流程分为:one-stage和two-stage

Faster RCNN

经典two stage检测网络

Faster RCNN 数据流

  1. Feature map:[256, h_f, w_f]
  2. 2 Softmax:[num_anchors, h_f, w_f]
  3. Regressors:[num_anchors*4, h_f, w_f]
  4. NMS OUT:[n_proposals=2000, 4]
  5. ROI Layer:[512, 256, 7, 7]
  6. FC1 FC2:[512, 1024]
  7. c+1 Softmax: [512, c+1]
  8. Regressors:[512, (c+1)*4]

Faster RCNN 主要组件

  1. backbone
  2. rpn
  3. filter_proposals(NMS)
  4. roi_heads

Faster RCNN 行人检测

数据: PennFudanPed数据集, 70张行人照片共345行人标签

官方地址: http://www.cis.upenn.edu/\~jshi/ped_html/

模型: fasterrcnn_resnet50_fpn 进行finetune

目标检测推荐github:https://github.com/amusi/awesome-object-detection

代码如下:

python 复制代码
import os
import time
import torch.nn as nn
import torch
import random
import numpy as np
import torchvision.transforms as transforms
import torchvision
from PIL import Image
import torch.nn.functional as F
from my_dataset import PennFudanDataset
from common_tools import set_seed
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.transforms import functional as F
import enviroments

set_seed(1)  # 设置随机种子

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# classes_coco
COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


def vis_bbox(img, output, classes, max_vis=40, prob_thres=0.4):
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(img, aspect='equal')

    out_boxes = output_dict["boxes"].cpu()
    out_scores = output_dict["scores"].cpu()
    out_labels = output_dict["labels"].cpu()

    num_boxes = out_boxes.shape[0]
    for idx in range(0, min(num_boxes, max_vis)):

        score = out_scores[idx].numpy()
        bbox = out_boxes[idx].numpy()
        class_name = classes[out_labels[idx]]

        if score < prob_thres:
            continue

        ax.add_patch(plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False,
                                   edgecolor='red', linewidth=3.5))
        ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')
    plt.show()
    plt.close()


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class RandomHorizontalFlip(object):
    def __init__(self, prob):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            height, width = image.shape[-2:]
            image = image.flip(-1)
            bbox = target["boxes"]
            bbox[:, [0, 2]] = width - bbox[:, [2, 0]]
            target["boxes"] = bbox
        return image, target


class ToTensor(object):
    def __call__(self, image, target):
        image = F.to_tensor(image)
        return image, target


if __name__ == "__main__":

    # config
    LR = 0.001
    num_classes = 2
    batch_size = 1
    start_epoch, max_epoch = 0, 5
    train_dir = enviroments.pennFudanPed_data_dir
    train_transform = Compose([ToTensor(), RandomHorizontalFlip(0.5)])

    # step 1: data
    train_set = PennFudanDataset(data_dir=train_dir, transforms=train_transform)

    # 收集batch data的函数
    def collate_fn(batch):
        return tuple(zip(*batch))

    train_loader = DataLoader(train_set, batch_size=batch_size, collate_fn=collate_fn)

    # step 2: model
    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # replace the pre-trained head with a new one

    model.to(device)

    # step 3: loss
    # in lib/python3.6/site-packages/torchvision/models/detection/roi_heads.py
    # def fastrcnn_loss(class_logits, box_regression, labels, regression_targets)

    # step 4: optimizer scheduler
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params, lr=LR, momentum=0.9, weight_decay=0.0005)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

    # step 5: Iteration

    for epoch in range(start_epoch, max_epoch):

        model.train()
        for iter, (images, targets) in enumerate(train_loader):

            images = list(image.to(device) for image in images)
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

            # if torch.cuda.is_available():
            #     images, targets = images.to(device), targets.to(device)

            loss_dict = model(images, targets)  # images is list; targets is [ dict["boxes":**, "labels":**], dict[] ]

            losses = sum(loss for loss in loss_dict.values())

            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} ".format(
                epoch, max_epoch, iter + 1, len(train_loader), losses.item()))

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()

        lr_scheduler.step()

    # test
    model.eval()

    # config
    vis_num = 5
    vis_dir = os.path.join(BASE_DIR, "..", "..", "data", "PennFudanPed", "PNGImages")
    img_names = list(filter(lambda x: x.endswith(".png"), os.listdir(vis_dir)))
    random.shuffle(img_names)
    preprocess = transforms.Compose([transforms.ToTensor(), ])

    for i in range(0, vis_num):

        path_img = os.path.join(vis_dir, img_names[i])
        # preprocess
        input_image = Image.open(path_img).convert("RGB")
        img_chw = preprocess(input_image)

        # to device
        if torch.cuda.is_available():
            img_chw = img_chw.to('cuda')
            model.to('cuda')

        # forward
        input_list = [img_chw]
        with torch.no_grad():
            tic = time.time()
            print("input img tensor shape:{}".format(input_list[0].shape))
            output_list = model(input_list)
            output_dict = output_list[0]
            print("pass: {:.3f}s".format(time.time() - tic))

        # visualization
        vis_bbox(input_image, output_dict, COCO_INSTANCE_CATEGORY_NAMES, max_vis=20, prob_thres=0.5)  # for 2 epoch for nms
相关推荐
十铭忘8 分钟前
SAM2跟踪的理解6——mask decoder
人工智能·计算机视觉
不会计算机的g_c__b15 分钟前
AI Agent 三大核心组件解析:规划、记忆与工具使用,构建真正智能体
人工智能
听风吹等浪起18 分钟前
机器学习算法:随机梯度下降算法
人工智能·深度学习·算法·机器学习
Yuner200018 分钟前
Python机器学习:从零基础到深度实战
人工智能·python·机器学习
落羽的落羽19 分钟前
【C++】哈希扩展——位图和布隆过滤器的介绍与实现
linux·服务器·开发语言·c++·人工智能·算法·机器学习
拉姆哥的小屋20 分钟前
【深度学习实战】基于CyclePatch框架的电池寿命预测:从NASA数据集到Transformer模型的完整实现
人工智能·深度学习·transformer
speop22 分钟前
【datawhale组队学习】TASK01|课程导论:站在认知范式的临界点
人工智能·学习
普密斯科技25 分钟前
从点测量到解决方案:光谱共焦技术如何集成于运动平台,实现3D轮廓扫描与透明物体测厚?
人工智能·算法·计算机视觉·3d·集成测试·测量
音视频牛哥29 分钟前
SmartMediakit技术白皮书:与主流云厂商(PaaS)的技术定位对比与选型指南
人工智能·深度学习·机器学习·音视频·gb28181对接·rtsp服务器·rtsp播放器rtmp播放器