深度学习---------------------------深度循环神经网络

目录

回顾:循环神经网络


RNN就一个隐藏的层,无法做的很宽,所以一般的做法是做的更深。(更深的时候是说每一层做一点点的非线性。)

怎么样把循环网络变深?怎么样获得更多的非线性

多加几个隐藏层

更深:



当前的第一个隐藏层 H t 1 H_{t}^{1} Ht1,第j层就是 H t j H_{t}^{j} Htj等于 f j f_j fj下(第j层的上一个时刻的H,第j-1层时刻的隐藏状态)


总结

深度循环神经网络使用多个隐藏层来获得更多的非线性性。


深度循环神经网络代码

python 复制代码
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
# 将数据集划分为以batch_size为批量大小,num_steps为时间步数的小批量数据
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
# 设置隐藏层数为2,即num_layers
vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
# 将输入的维度设置为词汇表的大小,用于将词汇表中的词转换为嵌入向量
num_inputs = vocab_size
device = d2l.try_gpu()
# 创建 LSTM 层
lstm_layer = nn.LSTM(num_inputs, num_hiddens, num_layers)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
num_epochs, lr = 500, 2
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
d2l.plt.show()


相关推荐
暴龙胡乱写博客4 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条12 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po13 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条13 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞18 分钟前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
清流君31 分钟前
【MySQL】数据库 Navicat 可视化工具与 MySQL 命令行基本操作
数据库·人工智能·笔记·mysql·ue5·数字孪生
Blossom.11838 分钟前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
biter008840 分钟前
ubuntu(28):ubuntu系统多版本conda和多版本cuda共存
linux·人工智能·ubuntu·conda
电鱼智能的电小鱼1 小时前
基于 EFISH-SBC-RK3588 的无人机通信云端数据处理模块方案‌
linux·网络·人工智能·嵌入式硬件·无人机·边缘计算