深度学习---------------------------深度循环神经网络

目录

回顾:循环神经网络


RNN就一个隐藏的层,无法做的很宽,所以一般的做法是做的更深。(更深的时候是说每一层做一点点的非线性。)

怎么样把循环网络变深?怎么样获得更多的非线性

多加几个隐藏层

更深:



当前的第一个隐藏层 H t 1 H_{t}^{1} Ht1,第j层就是 H t j H_{t}^{j} Htj等于 f j f_j fj下(第j层的上一个时刻的H,第j-1层时刻的隐藏状态)


总结

深度循环神经网络使用多个隐藏层来获得更多的非线性性。


深度循环神经网络代码

python 复制代码
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
# 将数据集划分为以batch_size为批量大小,num_steps为时间步数的小批量数据
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
# 设置隐藏层数为2,即num_layers
vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
# 将输入的维度设置为词汇表的大小,用于将词汇表中的词转换为嵌入向量
num_inputs = vocab_size
device = d2l.try_gpu()
# 创建 LSTM 层
lstm_layer = nn.LSTM(num_inputs, num_hiddens, num_layers)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
num_epochs, lr = 500, 2
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
d2l.plt.show()


相关推荐
电棍23328 分钟前
工程记录:使用tello edu无人机进行计算机视觉工作(手势识别,yolo3搭载)
人工智能·计算机视觉·无人机
wan5555cn30 分钟前
国产电脑操作系统与硬盘兼容性现状分析:挑战与前景评估
人工智能·笔记·深度学习·机器学习·电脑·生活
BullSmall1 小时前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
woshihonghonga2 小时前
停止Conda开机自动运行方法
linux·人工智能·conda
海洲探索-Hydrovo3 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机4 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬5 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495646 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
zhangjipinggom7 小时前
multi-head attention 多头注意力实现细节
深度学习
倔强青铜三7 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试