深度学习---------------------------深度循环神经网络

目录

回顾:循环神经网络


RNN就一个隐藏的层,无法做的很宽,所以一般的做法是做的更深。(更深的时候是说每一层做一点点的非线性。)

怎么样把循环网络变深?怎么样获得更多的非线性

多加几个隐藏层

更深:



当前的第一个隐藏层 H t 1 H_{t}^{1} Ht1,第j层就是 H t j H_{t}^{j} Htj等于 f j f_j fj下(第j层的上一个时刻的H,第j-1层时刻的隐藏状态)


总结

深度循环神经网络使用多个隐藏层来获得更多的非线性性。


深度循环神经网络代码

python 复制代码
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
# 将数据集划分为以batch_size为批量大小,num_steps为时间步数的小批量数据
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
# 设置隐藏层数为2,即num_layers
vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
# 将输入的维度设置为词汇表的大小,用于将词汇表中的词转换为嵌入向量
num_inputs = vocab_size
device = d2l.try_gpu()
# 创建 LSTM 层
lstm_layer = nn.LSTM(num_inputs, num_hiddens, num_layers)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
num_epochs, lr = 500, 2
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
d2l.plt.show()


相关推荐
荼蘼13 分钟前
OpenCV 高阶 图像金字塔 用法解析及案例实现
人工智能·opencv·计算机视觉
Clownseven15 分钟前
2025云计算趋势:Serverless与AI大模型如何赋能中小企业
人工智能·serverless·云计算
2401_8288906416 分钟前
使用 BERT 实现意图理解和实体识别
人工智能·python·自然语言处理·bert·transformer
Cheney82229 分钟前
华为Ai岗机考20250903完整真题
人工智能·华为
新智元35 分钟前
=COPILOT() 函数横空出世!AI 自动写公式效率起飞,网友:让 Excel 再次伟大
人工智能·openai
scx_link42 分钟前
Word2Vec词嵌入技术和动态词嵌入技术
人工智能·自然语言处理·word2vec
云梦谭44 分钟前
Cursor 编辑器:面向 AI 编程的新一代 IDE
ide·人工智能·编辑器
IT_陈寒1 小时前
Redis性能提升50%的7个关键优化策略,90%开发者都不知道第5点!
前端·人工智能·后端
乐迪信息1 小时前
乐迪信息:AI摄像机在智慧煤矿人员安全与行为识别中的技术应用
大数据·人工智能·算法·安全·视觉检测
AI人工智能+1 小时前
炫光活体检测技术:通过光学技术实现高效、安全的身份验证,有效防御多种伪造手段。
人工智能·深度学习·人脸识别·活体检测