大数据毕业设计选题推荐-民族服饰数据分析系统-Python数据可视化-Hive-Hadoop-Spark

作者主页 :IT研究室✨

个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。

☑文末获取源码☑
精彩专栏推荐 ⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

一、前言

民族服饰作为中华文化的重要组成部分,承载着丰富的历史文化内涵和民族特色。随着社会经济的发展和文化传承意识的增强,民族服饰逐渐受到广泛关注。据文化和旅游部统计,2019年我国非物质文化遗产保护项目中,与民族服饰相关的项目达1200余项,占比超过10%。同时,民族服饰产业规模持续扩大,2020年中国民族服饰市场规模达到1500亿元,年增长率保持在15%左右。然而,民族服饰信息的收集、整理和分析仍面临诸多挑战。传统的信息管理方式难以应对海量、多样化的民族服饰数据,无法有效挖掘其中蕴含的文化价值和市场潜力。据调查,超过60%的民族服饰相关企业和研究机构表示缺乏系统化的数据分析工具,影响了产品开发和市场决策的效率。此外,随着互联网技术的发展,民族服饰信息呈现碎片化、分散化趋势,如何有效整合和利用这些数据资源,成为亟待解决的问题。因此,开发一个专门的民族服饰数据分析系统,对于促进民族文化传承和产业发展具有重要意义。

民族服饰数据分析系统的开发和应用价值主要体现在以下几个方面:文化传承与保护方面,该系统通过系统化收集和分析民族服饰数据,为非物质文化遗产的保护和传承提供了数字化支撑,有助于民族文化的长久保存和传播。产业发展与创新方面,系统通过分析服饰特征、市场需求等数据,为民族服饰产业提供设计灵感和市场洞察,推动传统工艺与现代设计的融合创新。教育研究支持方面,该系统为民族学、服装设计等领域的研究者和学生提供了丰富的数据资源和分析工具,促进相关学科的发展和人才培养。旅游文化推广方面,通过可视化展示民族服饰的多样性和特色,系统能够增强公众对民族文化的认知和兴趣,促进文化旅游的发展。决策支持方面,系统通过数据分析为政府部门制定文化保护政策和产业发展规划提供科学依据。综上所述,民族服饰数据分析系统的开发不仅能够促进民族文化的传承与创新,还能推动相关产业的数字化转型,对于提升中国文化软实力和经济发展具有重要的现实意义。

二、开发环境

  • 开发语言:Java/Python
  • 数据库:MySQL
  • 系统架构:B/S
  • 后端:SpringBoot/SSM/Django/Flask
  • 前端:Vue

三、系统界面展示

  • 民族服饰数据分析系统界面展示:



四、代码参考

  • 项目实战代码参考:
java(贴上部分代码) 复制代码
@RestController
@RequestMapping("/api/ethnic-costumes")
public class EthnicCostumeController {

    @Autowired
    private EthnicCostumeService ethnicCostumeService;

    @GetMapping
    public R list(@RequestParam(required = false) String ethnicity,
                  @RequestParam(required = false) String region,
                  @RequestParam(required = false) String category,
                  @RequestParam(defaultValue = "1") Integer page,
                  @RequestParam(defaultValue = "10") Integer size) {
        Page<EthnicCostume> pageParam = new Page<>(page, size);
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        
        queryWrapper.eq(StringUtils.isNotBlank(ethnicity), EthnicCostume::getEthnicity, ethnicity)
                    .like(StringUtils.isNotBlank(region), EthnicCostume::getRegion, region)
                    .eq(StringUtils.isNotBlank(category), EthnicCostume::getCategory, category)
                    .orderByDesc(EthnicCostume::getUpdateTime);
        
        Page<EthnicCostume> result = ethnicCostumeService.page(pageParam, queryWrapper);
        return R.ok().data("items", result.getRecords()).data("total", result.getTotal());
    }

    @PostMapping
    public R save(@RequestBody EthnicCostume ethnicCostume) {
        ethnicCostumeService.save(ethnicCostume);
        return R.ok();
    }

    @PutMapping("/{id}")
    public R update(@PathVariable String id, @RequestBody EthnicCostume ethnicCostume) {
        ethnicCostume.setId(id);
        ethnicCostumeService.updateById(ethnicCostume);
        return R.ok();
    }

    @DeleteMapping("/{id}")
    public R remove(@PathVariable String id) {
        ethnicCostumeService.removeById(id);
        return R.ok();
    }

    @GetMapping("/{id}")
    public R getById(@PathVariable String id) {
        EthnicCostume ethnicCostume = ethnicCostumeService.getById(id);
        return R.ok().data("item", ethnicCostume);
    }

    @GetMapping("/statistics")
    public R getStatistics() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.select(EthnicCostume::getEthnicity, EthnicCostume::getEthnicity.count().as("count"))
                    .groupBy(EthnicCostume::getEthnicity);
        List<Map<String, Object>> ethnicityStats = ethnicCostumeService.listMaps(queryWrapper);

        queryWrapper.clear();
        queryWrapper.select(EthnicCostume::getRegion, EthnicCostume::getRegion.count().as("count"))
                    .groupBy(EthnicCostume::getRegion);
        List<Map<String, Object>> regionStats = ethnicCostumeService.listMaps(queryWrapper);

        queryWrapper.clear();
        queryWrapper.select(EthnicCostume::getCategory, EthnicCostume::getCategory.count().as("count"))
                    .groupBy(EthnicCostume::getCategory);
        List<Map<String, Object>> categoryStats = ethnicCostumeService.listMaps(queryWrapper);

        Map<String, Object> statistics = new HashMap<>();
        statistics.put("ethnicityStats", ethnicityStats);
        statistics.put("regionStats", regionStats);
        statistics.put("categoryStats", categoryStats);

        return R.ok().data("statistics", statistics);
    }

    @GetMapping("/search")
    public R search(@RequestParam String keyword) {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.like(EthnicCostume::getName, keyword)
                    .or().like(EthnicCostume::getDescription, keyword)
                    .or().like(EthnicCostume::getEthnicity, keyword)
                    .or().like(EthnicCostume::getRegion, keyword);
        List<EthnicCostume> results = ethnicCostumeService.list(queryWrapper);
        return R.ok().data("items", results);
    }
}
java(贴上部分代码) 复制代码
@RestController
@RequestMapping("/api/visualization")
public class VisualizationController {

    @Autowired
    private EthnicCostumeService ethnicCostumeService;

    @GetMapping("/ethnicity-distribution")
    public R getEthnicityDistribution() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getEthnicity)
                    .select(EthnicCostume::getEthnicity, EthnicCostume::getEthnicity.count().as("count"));
        
        List<Map<String, Object>> distribution = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("ethnicityDistribution", distribution);
    }

    @GetMapping("/region-distribution")
    public R getRegionDistribution() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getRegion)
                    .select(EthnicCostume::getRegion, EthnicCostume::getRegion.count().as("count"));
        
        List<Map<String, Object>> distribution = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("regionDistribution", distribution);
    }

    @GetMapping("/category-distribution")
    public R getCategoryDistribution() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getCategory)
                    .select(EthnicCostume::getCategory, EthnicCostume::getCategory.count().as("count"));
        
        List<Map<String, Object>> distribution = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("categoryDistribution", distribution);
    }

    @GetMapping("/material-usage")
    public R getMaterialUsage() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getMaterial)
                    .select(EthnicCostume::getMaterial, EthnicCostume::getMaterial.count().as("count"))
                    .orderByDesc(EthnicCostume::getMaterial.count());
        
        List<Map<String, Object>> materialUsage = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("materialUsage", materialUsage);
    }

    @GetMapping("/color-palette")
    public R getColorPalette() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getPrimaryColor)
                    .select(EthnicCostume::getPrimaryColor, EthnicCostume::getPrimaryColor.count().as("count"))
                    .orderByDesc(EthnicCostume::getPrimaryColor.count());
        
        List<Map<String, Object>> colorPalette = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("colorPalette", colorPalette);
    }

    @GetMapping("/time-period-analysis")
    public R getTimePeriodAnalysis() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getTimePeriod)
                    .select(EthnicCostume::getTimePeriod, EthnicCostume::getTimePeriod.count().as("count"))
                    .orderByAsc(EthnicCostume::getTimePeriod);
        
        List<Map<String, Object>> timePeriodAnalysis = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("timePeriodAnalysis", timePeriodAnalysis);
    }

    @GetMapping("/pattern-analysis")
    public R getPatternAnalysis() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getPattern)
                    .select(EthnicCostume::getPattern, EthnicCostume::getPattern.count().as("count"))
                    .orderByDesc(EthnicCostume::getPattern.count());
        
        List<Map<String, Object>> patternAnalysis = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("patternAnalysis", patternAnalysis);
    }
}

五、论文参考

  • 计算机毕业设计选题推荐-民族服饰数据分析系统论文参考:

六、系统视频

民族服饰数据分析系统项目视频:

大数据毕业设计选题推荐-民族服饰数据分析系统-Python数据可视化-Hive-Hadoop-Spark

结语

大数据毕业设计选题推荐-民族服饰数据分析系统-Python数据可视化-Hive-Hadoop-Spark

大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:⬇⬇⬇

精彩专栏推荐 ⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

相关推荐
Elastic 中国社区官方博客3 小时前
使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变
大数据·人工智能·elasticsearch·microsoft·搜索引擎·ai·azure
Francek Chen5 小时前
【大数据技术基础 | 实验十二】Hive实验:Hive分区
大数据·数据仓库·hive·hadoop·分布式
Natural_yz8 小时前
大数据学习17之Spark-Core
大数据·学习·spark
莫叫石榴姐9 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
苹果酱056710 小时前
前端面试vue篇:Vue2 和 Vue3 在设计和性能上有显著区别
java·spring boot·毕业设计·layui·课程设计
魔珐科技11 小时前
以3D数字人AI产品赋能教育培训人才发展,魔珐科技亮相AI+教育创新与人才发展大会
大数据·人工智能
上优11 小时前
uniapp 选择 省市区 省市 以及 回显
大数据·elasticsearch·uni-app
samLi062012 小时前
【更新】中国省级产业集聚测算数据及协调集聚指数数据(2000-2022年)
大数据
Mephisto.java12 小时前
【大数据学习 | Spark-Core】Spark提交及运行流程
大数据·学习·spark
EasyCVR13 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265