解决方案:机器学习中,回归及分类常用的模型评估指标有哪些

文章目录

  • 一、现象
  • 二、解决方案
    • 回归任务的评价指标:
      • [均方误差 (MSE):](#均方误差 (MSE):)
      • [平均绝对误差 (MAE):](#平均绝对误差 (MAE):)
    • 分类任务的评价指标:
      • [准确率 (Accuracy):](#准确率 (Accuracy):)
      • [混淆矩阵 (Confusion Matrix):](#混淆矩阵 (Confusion Matrix):)
      • [精确度 (Precision):](#精确度 (Precision):)
      • [召回率 (Recall):](#召回率 (Recall):)
      • [F1分数 (F1 Score):](#F1分数 (F1 Score):)
      • [ROC曲线 (Receiver Operating Characteristic Curve):](#ROC曲线 (Receiver Operating Characteristic Curve):)
      • [AUC值 (Area Under the ROC Curve):](#AUC值 (Area Under the ROC Curve):)
      • [对数损失 (Log Loss) 或 交叉熵损失 (Cross-Entropy Loss):](#对数损失 (Log Loss) 或 交叉熵损失 (Cross-Entropy Loss):)

一、现象

在做模型建模做模型评估的时候,会用到模型评估指标,所以整理一下

二、解决方案

在机器学习中,回归和分类是两种常见的任务类型,它们各自有不同的评价指标来衡量模型的性能。

回归任务的评价指标:

均方误差 (MSE):

平均绝对误差 (MAE):

分类任务的评价指标:

准确率 (Accuracy):

Accuracy = 总样本数 / 正确分类的样本数

混淆矩阵 (Confusion Matrix):

一个表格,用于显示实际类别与模型预测类别之间的关系。

精确度 (Precision):

Precision = 真正例 / (真正例 + 假正例)

其中 TP 是真正例,TN 是真负例,FP 是假正例,FN 是假负例。

召回率 (Recall):

Recall = 真正例 / (真正例 + 假负例)

其中 TP 是真正例,TN 是真负例,FP 是假正例,FN 是假负例。

F1分数 (F1 Score):

F1 = (2 × Precision × Recall) / (Precision + Recall)

ROC曲线 (Receiver Operating Characteristic Curve):

绘制真正例率(TPR)和假正例率(FPR)的曲线。

真正例率(TPR),也称为召回率或灵敏度,计算公式为:TPR = TP / ( TP + FN )

其中TP是真正例的数量,即模型正确预测为正类的样本数;FN是假负例的数量,即模型错误预测为负类的正类样本数。

假正例率(FPR),计算公式为:FPR = FP / ( FP+TN )

其中FP是假正例的数量,即模型错误预测为正类的负类样本数;TN是真负例的数量,即模型正确预测为负类的样本数。

AUC值 (Area Under the ROC Curve):

ROC曲线下的面积,用于衡量模型的整体性能。

AUC值越接近1,表示模型的性能越好;AUC值为0.5时,表示模型的性能等同于随机猜测。

对数损失 (Log Loss) 或 交叉熵损失 (Cross-Entropy Loss):

这些指标可以帮助我们了解模型在不同方面的表现,例如偏差、方差、过拟合和欠拟合等。在实际应用中,通常会根据具体问题选择最合适的评价指标。

相关推荐
测试人社区-小明3 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
人邮异步社区4 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习
xiangzhihong84 小时前
使用 Trae IDE 一键将 Figma 转为前端代码
机器学习
Coding茶水间5 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
露临霜5 小时前
重启机器学习
人工智能·机器学习
CappuccinoRose6 小时前
均值向量的检验
机器学习·均值向量·均值向量的检验·多元均值向量的检验
数据科学项目实践7 小时前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:常用函数
人工智能·python·机器学习·数据挖掘·数据分析·pandas·数据可视化
一瞬祈望8 小时前
PyTorch 图像分类完整项目模板实战
人工智能·pytorch·python·深度学习·分类
明月照山海-8 小时前
机器学习周报二十六
人工智能·机器学习·计算机视觉
Master_oid9 小时前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习