线性代数书中求解齐次线性方程组、非齐次线性方程组方法的特点和缺陷(附实例讲解)

目录

一、克拉默法则

[1. 方法概述](#1. 方法概述)

[2. 例16(1) P45](#2. 例16(1) P45)

[3. 特点](#3. 特点)

[(1) 只适用于系数矩阵是方阵](#(1) 只适用于系数矩阵是方阵)

[(2) 只适用于行列式非零](#(2) 只适用于行列式非零)

[(3) 只适用于唯一解的情况](#(3) 只适用于唯一解的情况)

[(4) 只适用于非齐次线性方程组](#(4) 只适用于非齐次线性方程组)

二、逆矩阵

[1. 方法概述](#1. 方法概述)

[2. 例16(2) P45](#2. 例16(2) P45)

[3. 特点](#3. 特点)

[(1) 只适用于系数矩阵必须是方阵且可逆](#(1) 只适用于系数矩阵必须是方阵且可逆)

[(2) 只适用于唯一解的情况](#(2) 只适用于唯一解的情况)

[(3) 只适用于非齐次线性方程组](#(3) 只适用于非齐次线性方程组)

三、高斯-约旦消元法

[1. 方法概述](#1. 方法概述)

[2. 例14 P65](#2. 例14 P65)

[3. 特点](#3. 特点)

[(1) 同时适用于齐次线性方程组和非齐次线性方程组](#(1) 同时适用于齐次线性方程组和非齐次线性方程组)

四、高斯-约旦消元法+定理3

[1. 定理3](#1. 定理3)

[​2. 方法概述](#2. 方法概述)

[3. 例13(解法一) P75](#3. 例13(解法一) P75)

[3. 特点](#3. 特点)

[(1) 适用于系数或者常数中含有未知数的情况](#(1) 适用于系数或者常数中含有未知数的情况)

[(2) 可根据定理3判断解的情况](#(2) 可根据定理3判断解的情况)

[(3) 对于无穷多解的情况,可给出通解](#(3) 对于无穷多解的情况,可给出通解)

[(4) 同时适用于齐次线性方程组和非齐次线性方程组](#(4) 同时适用于齐次线性方程组和非齐次线性方程组)

五、行列式法+定理3

[1. 方法概述](#1. 方法概述)

[2. 例13(解法二) P75](#2. 例13(解法二) P75)

[3. 特点](#3. 特点)

[(1) 只适用于系数矩阵为方阵的情况](#(1) 只适用于系数矩阵为方阵的情况)

[(2) 同时适用于齐次线性方程组和非齐次线性方程组](#(2) 同时适用于齐次线性方程组和非齐次线性方程组)

[(3) 先得出惟一解的情况,再求得无解和无穷多解的情况](#(3) 先得出惟一解的情况,再求得无解和无穷多解的情况)

参考资料


方法不分先后,按书中顺序给出:

首先,书上对于齐次线性方程组和非齐次线性方程组的解题方法有以下:

克拉默法则

逆矩阵

高斯-约旦消元法

高斯-约旦消元法+定理3

行列式法+定理3

一、克拉默法则

1. 方法概述

2. 例16(1) P45

3. 特点

(1) 只适用于系数矩阵是方阵

因为克拉默法则先要判断系数矩阵的行列式是否为0,行列式必须是方阵,所以说如果系数矩阵不是方阵,无法适用克拉默法则。

(2) 只适用于行列式非零

(3) 只适用于唯一解的情况

(4) 只适用于非齐次线性方程组

克拉默法则需要用常数列替换系数方阵列,如果常数项全为0,那么替换得到的行列式全为0,再除以|A|得到的解全是0,无意义。

二、逆矩阵

1. 方法概述

2. 例16(2) P45

3. 特点

(1) 只适用于系数矩阵必须是方阵且可逆

因为先要用|A|是否为0来判断A是否可逆,才能进行左乘A逆的操作。

(2) 只适用于唯一解的情况

由于可逆矩阵的唯一性

(3) 只适用于非齐次线性方程组

如果常数项矩阵全为0,求出来的全为0解,无意义。

三、高斯-约旦消元法

1. 方法概述

2. 例14 P65

3. 特点

(1) 同时适用于齐次线性方程组和非齐次线性方程组

四、高斯-约旦消元法+定理3

1. 定理3

  1. 方法概述

高斯-约旦消元法化简增广矩阵(A,b),定理3判断解的情况

3. 例13(解法一) P75

虽然解法一中要求的是化为行阶梯形矩阵,但就我做过的题来看,能化到多简就化到简。

3. 特点

(1) 适用于系数或者常数中含有未知数的情况

(2) 可根据定理3判断解的情况

(3) 对于无穷多解的情况,可给出通解

**(4)**同时适用于齐次线性方程组和非齐次线性方程组

五、行列式法+定理3

1. 方法概述

用系数矩阵的方阵的行列式不等于0的情况求出未知数的解,系数方阵的行列式不等于0的情况本身就是惟一解的情况(逆矩阵的唯一性),其余的情况就是无解和无穷多解,结合定理3验证即可。

2. 例13(解法二) P75

3. 特点

(1) 只适用于系数矩阵为方阵的情况

(2) 同时适用于齐次线性方程组和非齐次线性方程组

(3) 先得出惟一解的情况,再求得无解和无穷多解的情况

参考资料

同济大学数学系. 工程数学 线性代数 第六版. 高等教育出版社. 2014
高斯-若尔当消元法_百度百科

相关推荐
中冕—霍格沃兹软件开发测试5 分钟前
探索性测试:思维驱动下的高效缺陷狩猎
人工智能·科技·开源·appium·bug
cnfalcon6 分钟前
ESP-IDF AI硬件开发技术问题记录
人工智能·esp-idf
陈佬昔没带相机7 分钟前
从罗永浩 x MiniMax 闫俊杰对谈中,一窥 AI 时代软件公司岗位变化
人工智能·程序员·敏捷开发
老马啸西风8 分钟前
成熟企业级技术平台-09-加密机 / 密钥管理服务 KMSS(Key Management & Security Service)
人工智能·深度学习·算法·职场和发展
2301_8018217110 分钟前
前期工作总结
人工智能
Ulana29 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199030 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄32 分钟前
【LORA】
人工智能
Jerryhut44 分钟前
Bev感知特征空间算法
人工智能
xian_wwq1 小时前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电