【azure-openai】批量翻译demo【python】【gradio】

要求:拥有azure-openai-api ,上传文件为csv格式,utf-8编码

注意:如果出现乱码,重新运行,换种方式打开,有时候wps会自动改编码。

实现功能:选择语言,使用gpt4omini(可改)进行翻译,翻译某一列,把翻译后的内容放到某一列,翻译后的文件可浏览器下载,适合验证翻译质量。

页面展示:

代码:

handlergpt.py
python 复制代码
from openai.lib.azure import AzureOpenAI

api_key = "sk-...."

def get_response_gpt(sys_msg, input_new):
    client = AzureOpenAI(
        azure_endpoint="https://....openai.azure.com/",
        api_key="....",  ##省略号的内容都需要azure官网获取。详见主页博客
        api_version="2024-06-01"
    )
    messages = [
        {"role": "system", "content": sys_msg},
        {"role": "user", "content": input_new}
    ]
    response = client.chat.completions.create(
        model="4omini",
        messages=messages
    )
    return response.choices[0].message.content.strip()

def bai2en(Input, language):
    sys_msg = (f"The current language of translation is <{language}>. "
                   "Translate only the text while maintaining the original punctuation. "
                   "Output only the translated text without any additional explanations. "
                   "''contains the content you want to translate."
                   "Only output the content in ''. Any other explanatory statements are prohibited."
                   "Here is the text to be translated:\n"
               )
    # sys_msg = (f"The current language of translation is English. "
    #                "Translate only the text while maintaining the original punctuation. "
    #                "Output only the translated text without any additional explanations. "
    #                "''contains the content you want to translate."
    #                "Only output the content in ''. Any other explanatory statements are prohibited."
    #                "Here is the text to be translated:\n"
    #            )
    if Input:
        input_new = Input
        return str(get_response_gpt(sys_msg, input_new))
    else:
        return "文本有误,重新输入"

def handler(input,language):
    Output = bai2en(input,language)
    return {"Output": Output}


if __name__ == '__main__':
    Input = input()
    print(bai2en(Input))
main.py
python 复制代码
import os
import csv
import gradio as gr
from handlergpt import handler

# 批量翻译,无延时
def process_csv_file(csv_filepath, output_filepath, language, source_column, target_column):
    output_log = []  # 用于存储输出日志
    with open(csv_filepath, 'r', encoding='utf-8') as csvfile:
        reader = csv.reader(csvfile)
        headers = next(reader)  # 读取表头

        # 确保表头列表足够长
        max_column = max(source_column, target_column)
        if len(headers) < max_column:
            headers.extend([''] * (max_column - len(headers)))

        # 设置目标列的表头为语言参数
        headers[target_column - 1] = language

        translated_rows = []
        row_count = 0  # 计数器,用于输出当前处理的行数

        for row in reader:
            row_count += 1

            # 确保每一行的列数足够
            if len(row) < max_column:
                row.extend([''] * (max_column - len(row)))  # 扩展到所需列数

            body = row[source_column - 1].strip()  # 获取指定列的内容

            if not body:
                translated_rows.append(row)  # 保持空行
                log_message = f"Row {row_count}: Empty body in source column {source_column}, skipped translation."
                output_log.append(log_message)
                print(log_message)
                continue

            formatted_body = format_body(body)
            # 传递 language 参数到 handler
            translated_body = handler(formatted_body, language)['Output']

            # 插入翻译内容到指定目标列
            row[target_column - 1] = translated_body

            translated_rows.append(row)

            # 输出当前处理的进度
            log_message = f"Row {row_count}: Translated body from '{body[:30]}...' to '{translated_body[:30]}...'"
            output_log.append(log_message)
            print(log_message)  # 控制台输出

        # 保存结果到新的 CSV 文件,包含修改后的表头
        with open(output_filepath, 'w', newline='', encoding='utf-8') as outfile:
            writer = csv.writer(outfile)
            writer.writerow(headers)  # 写入表头
            writer.writerows(translated_rows)

        completion_message = f"Translation complete. File saved to {output_filepath}"
        output_log.append(completion_message)
        print(completion_message)  # 控制台输出
        return "\n".join(output_log)  # 将日志作为结果返回给 Gradio


def format_body(body):
    # 对正文进行格式化处理
    return body


# Gradio UI函数
def translate_file(csv_file, language, source_column, target_column):
    if csv_file is None:
        return "Please upload a CSV file."

    # 为了确保文件保存为本地可下载文件,使用临时文件路径
    output_filepath = os.path.join(os.getcwd(), "自定义路径.csv")
    csv_filepath = csv_file.name

    # 调用翻译函数
    process_csv_file(csv_filepath, output_filepath, language, int(source_column), int(target_column))

    # 返回生成的文件路径,供用户下载
    return output_filepath


# 创建 Gradio 界面
def main():
    # 定义语言选择、源列、目标列和文件上传
    language = gr.Dropdown(
        choices=["English", "Chinese", "Spanish", "Portuguese", "French", "German", "Italian", "Japanese", "Korean",
                 "Hindi", "Bengali", "Russian", "Indonesian", "Vietnamese", "Dutch", "Hungarian", "Turkish", "Polish"],  ##可以添加语言,无特殊标志符,只要gpt能懂就行
        label="Target Language")
    csv_file_path = gr.File(label="CSV File to Translate")
    source_column = gr.Number(label="Source Column (e.g., 1 for first column)", value=1, precision=0)
    target_column = gr.Number(label="Target Column (e.g., 3 for third column)", value=3, precision=0)

    # 创建 Gradio 界面,允许用户上传文件并提供下载
    iface = gr.Interface(
        fn=translate_file,
        inputs=[csv_file_path, language, source_column, target_column],
        outputs=gr.File(label="Download Translated CSV"),  # 设置为文件下载类型
        title="CSV Translation Tool",
        description="Upload a CSV file, choose a target language, specify source and target columns, and download the translated CSV."
    )

    iface.launch(server_name="192.xxx.xx.xx", server_port=xxxx)  # 允许局域网访问,设置端口


if __name__ == '__main__':
    main()
相关推荐
黑客-雨7 分钟前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
孤独且没人爱的纸鹤21 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
l1x1n024 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
是Dream呀1 小时前
Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
python·神经网络·迁移学习
小林熬夜学编程1 小时前
【Python】第三弹---编程基础进阶:掌握输入输出与运算符的全面指南
开发语言·python·算法
hunter2062063 小时前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Johaden5 小时前
EXCEL+Python搞定数据处理(第一部分:Python入门-第2章:开发环境)
开发语言·vscode·python·conda·excel
小虎牙^O^6 小时前
2024春秋杯密码题第一、二天WP
python·密码学
梦魇梦狸º7 小时前
mac 配置 python 环境变量
chrome·python·macos
查理零世7 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分