Llama微调以及Ollama部署

1 Llama微调

在基础模型的基础上,通过一些特定的数据集,将具有特定功能加在原有的模型上。

1.1 效果对比

  • 特定数据集
  • 未使用微调的基础模型的回答
  • 使用微调后的回答

1.2 基础模型

基础大模型我选择Mistral-7B-v0.3-Chinese-Chat-uncensored,

模型文件可以在HuggingFace 模型

1.3 选择数据集

微调大模型要想获得比较好的效果,拥有高质量的数据集是关键。可以选择用网上开源的,或者是自己制作。以中文数据集弱智吧为例,约1500条对话数据,数据集可以从HuggingFace 数据集

1.4 训练lora模型并与基础模型进行合并

新建一个merge.py文件,将基础模型和lora模型合并为一个新的模型文件

复制代码
执行merge.py,需要传入的参数(改成自己的):
--base_model
基础模型路径
--lora_model
微调的lora模型路径
--output_dir
合并后模型的输出路径

1.5 量化模型

利用llama.cpp进行量化模型.

  • 1.安装CMAKE下载llama.cpp源码
    git clone https://github.com/ggerganov/llama.cpp.git
    cd llama.cpp
  • 2.安装依赖
    pip install -r requirements/requirements-convert-hf-to-gguf.txt
    cmake -B build
    cmake --build build --config Release
  • 3.执行转换脚本,将safetensors转换为gguf文件,便于量化
    convert-hf-to-gguf.py 合并后模型的位置 --outtype f16 --outfile 转换后模型的位置my_llama3.gguf
  • 4.对转后的文件进行量化操作。
    llama.cpp所在位置\llama.cpp\build\bin\Release quantize.exe 转换后模型的路径 量化后模型的位置quantized_model.gguf q4_0

至此,llama微调后的模型操作完毕,可以直接使用。

2.Ollama部署

Ollama安装地址

2.1 部署现有的模型

打开Ollama,找到目录中现有的模型,使用ollama run llama3.2,来使用现有模型。

2.2 使用微调模型

  • 1.在上述已量化好的模型quantized_model.gguf的目录中新建Modelfile文件

    FROM 量化好的模型路径
    TEMPLATE "[INST] {{ .Prompt }} [/INST]"

  • 2.使用微调模型

    ollama create 模型名字 -f Modelfile文件路径

    ollama create panda -f test.Modelfile

相关推荐
骑士9991113 天前
llama_factory 安装以及大模型微调
llama
周小码3 天前
llama-stack实战:Python构建Llama应用的可组合开发框架(8k星)
开发语言·python·llama
blackoon886 天前
DeepSeek R1大模型微调实战-llama-factory的模型下载与训练
llama
johnny2336 天前
大模型微调理论、实战:LLaMA-Factory、Unsloth
llama
闲看云起6 天前
从 GPT 到 LLaMA:解密 LLM 的核心架构——Decoder-Only 模型
gpt·架构·llama
小草cys7 天前
在树莓派集群上部署 Distributed Llama (Qwen 3 14B) 详细指南
python·llama·树莓派·qwen
咕咚-萌西8 天前
联邦学习论文分享:Towards Building the Federated GPT:Federated Instruction Tuning
llama·联邦学习·指令微调
relis9 天前
解密llama.cpp中的batch与ubatch:深度学习推理优化的内存艺术
深度学习·batch·llama
relis9 天前
解密llama.cpp:Prompt Processing如何实现高效推理?
prompt·llama
GEO_JYB10 天前
BERT家族进化史:从BERT到LLaMA,每一次飞跃都源于对“学习”的更深理解
学习·bert·llama