Llama微调以及Ollama部署

1 Llama微调

在基础模型的基础上,通过一些特定的数据集,将具有特定功能加在原有的模型上。

1.1 效果对比

  • 特定数据集
  • 未使用微调的基础模型的回答
  • 使用微调后的回答

1.2 基础模型

基础大模型我选择Mistral-7B-v0.3-Chinese-Chat-uncensored,

模型文件可以在HuggingFace 模型

1.3 选择数据集

微调大模型要想获得比较好的效果,拥有高质量的数据集是关键。可以选择用网上开源的,或者是自己制作。以中文数据集弱智吧为例,约1500条对话数据,数据集可以从HuggingFace 数据集

1.4 训练lora模型并与基础模型进行合并

新建一个merge.py文件,将基础模型和lora模型合并为一个新的模型文件

复制代码
执行merge.py,需要传入的参数(改成自己的):
--base_model
基础模型路径
--lora_model
微调的lora模型路径
--output_dir
合并后模型的输出路径

1.5 量化模型

利用llama.cpp进行量化模型.

  • 1.安装CMAKE下载llama.cpp源码
    git clone https://github.com/ggerganov/llama.cpp.git
    cd llama.cpp
  • 2.安装依赖
    pip install -r requirements/requirements-convert-hf-to-gguf.txt
    cmake -B build
    cmake --build build --config Release
  • 3.执行转换脚本,将safetensors转换为gguf文件,便于量化
    convert-hf-to-gguf.py 合并后模型的位置 --outtype f16 --outfile 转换后模型的位置my_llama3.gguf
  • 4.对转后的文件进行量化操作。
    llama.cpp所在位置\llama.cpp\build\bin\Release quantize.exe 转换后模型的路径 量化后模型的位置quantized_model.gguf q4_0

至此,llama微调后的模型操作完毕,可以直接使用。

2.Ollama部署

Ollama安装地址

2.1 部署现有的模型

打开Ollama,找到目录中现有的模型,使用ollama run llama3.2,来使用现有模型。

2.2 使用微调模型

  • 1.在上述已量化好的模型quantized_model.gguf的目录中新建Modelfile文件

    FROM 量化好的模型路径
    TEMPLATE "[INST] {{ .Prompt }} [/INST]"

  • 2.使用微调模型

    ollama create 模型名字 -f Modelfile文件路径

    ollama create panda -f test.Modelfile

相关推荐
阿猿收手吧!1 天前
【大模型】什么是大模型?vLLM是?模型部署?CUDA?
ai·llama
AI大模型1 天前
开源大模型全维度详解+实操部署(Mistral-、Gemma(Google)、Llama、Qwen),小白必看
llm·agent·llama
不会吉他的肌肉男不是好的挨踢男1 天前
LLaMA Factory 训练模型未检测到CUDA环境解决
python·ai·llama
TGITCIC1 天前
LLM推理引擎选型实战指南:用Transformers、llama.cpp 还是 vLLM 之争
transformer·llama·ai大模型·vllm·llama.cpp·大模型ai
被制作时长两年半的个人练习生2 天前
如何调试llama.cpp及判断是否支持RVV
linux·服务器·llama
小镇cxy3 天前
小模型微调过程记录
ai·llama
CV-杨帆4 天前
复现 LLama Guard Llama-Prompt-Guard-2-86M / Llama-Prompt-Guard-2-22M
llama
学习是生活的调味剂4 天前
LLaMA大模型家族发展介绍
人工智能·llama
love530love4 天前
【笔记】解决 Stable Diffusion WebUI 启动 “找不到llama_cpp模块”
运维·windows·笔记·python·stable diffusion·github·llama
同学小张6 天前
【端侧AI 与 C++】1. llama.cpp源码编译与本地运行
开发语言·c++·aigc·llama·agi·ai-native