机器人跳跃问题

机器人正在玩一个古老的基于 DOS 的游戏。

游戏中有 N+1N+1 座建筑------从 00 到 NN 编号,从左到右排列。

编号为 00 的建筑高度为 00 个单位,编号为 ii 的建筑高度为 H(i)H(i) 个单位。

起初,机器人在编号为 00 的建筑处。

每一步,它跳到下一个(右边)建筑。

假设机器人在第 kk 个建筑,且它现在的能量值是 EE,下一步它将跳到第 k+1k+1 个建筑。

如果 H(k+1)>EH(k+1)>E,那么机器人就失去 H(k+1)−EH(k+1)−E 的能量值,否则它将得到 E−H(k+1)E−H(k+1) 的能量值。

游戏目标是到达第 NN 个建筑,在这个过程中能量值不能为负数个单位。

现在的问题是机器人至少以多少能量值开始游戏,才可以保证成功完成游戏?

输入格式

第一行输入整数 NN。

第二行是 NN 个空格分隔的整数,H(1),H(2),...,H(N)H(1),H(2),...,H(N) 代表建筑物的高度。

输出格式

输出一个整数,表示所需的最少单位的初始能量值上取整后的结果。

数据范围

1≤N,H(i)≤1051≤N,H(i)≤105,

输入样例1:
5
3 4 3 2 4
输出样例1:
4
输入样例2:
3
4 4 4
输出样例2:
4
输入样例3:
3
1 6 4
输出样例3:
3

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 难度:中等 |
| 时/空限制:3s / 64MB |
| 总通过数:25556 |
| 总尝试数:58468 |
| 来源: 今日头条2019笔试题 |
| 算法标签 |

cpp 复制代码
#include <iostream>

using namespace std ;
#define int unsigned long long
const int N = 1e5+10;
int a[N];
int n;
bool check(int t)
{
    for(int j = 0; j < n; j++)
        {
            // cout << t << endl;
            if(t >= a[j])
                t += (t - a[j]);
            if(t < a[j])
                t -= (a[j] - t);
            // cout << t << endl;
            if(t < 0)  
            {
                
                return false;
            }
            // if (t >= 1e5) return true;
               
        }
      return true;
} 
signed main()
{
    
    cin >> n;
    
    for(int i = 0; i < n; i++)  cin >> a[i];
    int l = 1, r = 1e5+ 10;
    while(l < r)
    {
        int mid = (l + r) >> 1;
        if(check(mid))  r = mid;
        else l = mid + 1;
    }
    cout << l << endl;
}

递推

cpp 复制代码
//递推解方程
#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;

int n;
int h[N];
double p[N];//存放2的次幂

int main()
{
    cin >> n;
    for(int i = 1; i <= n; i++) cin >> h[i];

    p[0] = 1;//2^0=1

    double res = 0;
    for(int i = 1; i <= n; i++)
    {
        p[i] = p[i - 1] * 2;
        res += 1.0 / p[i] * h[i];
    }

    cout << ceil(res) << endl;

    return 0;
}
相关推荐
EAI-Robotics11 分钟前
机器人打包物品研究现状简述
机器人
肥猪猪爸13 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
linux_carlos13 分钟前
环形缓冲区
数据结构
readmancynn25 分钟前
二分基本实现
数据结构·算法
萝卜兽编程27 分钟前
优先级队列
c++·算法
Bucai_不才28 分钟前
【数据结构】树——链式存储二叉树的基础
数据结构·二叉树
盼海35 分钟前
排序算法(四)--快速排序
数据结构·算法·排序算法
一直学习永不止步1 小时前
LeetCode题练习与总结:最长回文串--409
java·数据结构·算法·leetcode·字符串·贪心·哈希表
Rstln1 小时前
【DP】个人练习-Leetcode-2019. The Score of Students Solving Math Expression
算法·leetcode·职场和发展
芜湖_2 小时前
【山大909算法题】2014-T1
算法·c·单链表