【线性代数】【第一章】行列式习题

文章目录

  • [一. 重要定理](#一. 重要定理)
    • [1. 代数余子式](#1. 代数余子式)
    • [2. 主要公式](#2. 主要公式)
    • [3. 方阵的行列式](#3. 方阵的行列式)
    • [4. 克拉默法则](#4. 克拉默法则)
  • [三. 典型例题](#三. 典型例题)
    • [1. 行列式计算](#1. 行列式计算)
    • [2. 行列式的应用](#2. 行列式的应用)
      • [2.1. 特征多项式](#2.1. 特征多项式)
      • [2.2. 克拉默法则](#2.2. 克拉默法则)
      • [2.3. 矩阵秩的概念](#2.3. 矩阵秩的概念)
    • [3. 关于|A|=0的判断](#3. 关于|A|=0的判断)
    • [4. 代数余子式之和](#4. 代数余子式之和)

一. 重要定理

1. 代数余子式

代数余子式之和

代数余子式怎么求:

不同行同列的代数余子式=0

2. 主要公式

主对角线行列式
副对角线行列式
拉普拉斯展开式
范德蒙

3. 方阵的行列式

4. 克拉默法则

三. 典型例题

1. 行列式计算

1.1. 数字型行列式

题型一:代数余子式降阶、拉普拉斯
  1. 通过代数余子式降阶求行列式

代数余子式降阶

代数余子式降阶+对角线公式。

拉普拉斯:

先换行在换列,然后再使用拉普拉斯

消元、代数余子式、局部下三角。

简化逻辑:消元。

(看到局部行列式)逐行相加消元。

去除一边的爪。

题型二:逐行消元,化为上三角式

逐行(上一行的结果用于下一行)消元,变成三角式行列式。

逐行消元,化为上三角式。

代数余子式化简,然后观察x三次方的系数。

1.2.抽象行列式(考察行列式的性质)

题型一. |A+B| 型的计算

利用行列式的性质:提行列式系数行列式拆开

题型二. 使用特征值,使用相似


题型三. 矩阵运算


2. 行列式的应用

2.1. 特征多项式

凑因式是求解本题型最佳方式。

简化成上三角,进而凑因式。

找公因式是做题思路

2.2. 克拉默法则

直接公式。

化成齐次方程组、非零矩阵=>非零解,A不是满秩。

2.3. 矩阵秩的概念

3. 关于|A|=0的判断

4. 代数余子式之和

  1. 同行不同列,两个不同的列,代数余子式相乘=0。
  2. 因为代数余子式与第三行无关,所以重新构建第三行。

方法1:直接求各个元素的代数余子式

方法2:分块矩阵求逆

求逆:初等变换法求逆[A:E]+分块求逆的公式。

相关推荐
JinSu_9 小时前
【学习体会】Eigen和GLM在矩阵初始化和底层数据存储的差异
线性代数·矩阵
wa的一声哭了10 小时前
赋范空间 赋范空间的完备性
python·线性代数·算法·机器学习·数学建模·矩阵·django
短视频矩阵源码定制10 小时前
专业的矩阵系统哪家强
线性代数·矩阵
大佬,救命!!!10 小时前
算子矩阵相关冒烟、功能、回归、性能的不同阶段测试点
线性代数·矩阵·回归
AI科技星1 天前
张祥前统一场论电荷定义方程分析报告
开发语言·经验分享·线性代数·算法·数学建模
闻缺陷则喜何志丹1 天前
【2025博客之星】求职总结
线性代数·数学·计算几何·objectarx·cad·高度数学
小宋加油啊2 天前
线性代数“秩”(LORA)
线性代数
式5162 天前
线性代数(十)四个基本子空间与矩阵空间
线性代数
甄心爱学习3 天前
SVD求解最小二乘(手写推导)
线性代数·算法·svd
RedMery3 天前
厄米特矩阵的性质
线性代数·矩阵