YOLOv11尝鲜测试五分钟极简配置

ultralytics团队在最近又推出了YOLOv11,不知道在有生之年能不能看到YOLOv100呢哈哈。

根据官方文档,在 Python>=3.8并且PyTorch>=1.8的环境下即可安装YOLOv11,因此之前YOLOv8的环境是可以直接用的。

安装YOLOv11:

bash 复制代码
pip install ultralytics

命令行测试:

bash 复制代码
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

或者

bash 复制代码
yolo predict model=yolo11n.pt source='=bus.jpg'

得到结果:

bash 复制代码
Ultralytics 8.3.1 🚀 Python-3.9.19 torch-1.8.0+cu111 CUDA:0 (NVIDIA GeForce RTX 3070 Laptop GPU, 8192MiB)
YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs

image 1/1 D:\document\VScode_workspace\ultralytics-8.3.1\bus.jpg: 640x480 4 persons, 1 bus, 0.0ms
Speed: 11.5ms preprocess, 0.0ms inference, 0.0ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict
VS Code: view Ultralytics VS Code Extension ⚡ at https://docs.ultralytics.com/integrations/vscode

python脚本测试:

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("zidane.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model

测试结果如下:

相关推荐
AdaCoding2 小时前
YOLOv8架构详解
yolo·网络结构图
云卷云舒___________3 小时前
【Ultralytics YOLO COCO 评估脚本 | 获得COCO评价指标】
yolo·coco·ultralytics
牙牙要健康21 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV2模型算法详解
pytorch·深度学习·目标检测
plmm烟酒僧1 天前
在 RK3588 多线程推理 YOLO 时,同时开启硬件解码和 RGA 加速的性能分析
yolo·rkmpp·瑞芯微·硬件加速·rga·色彩空间转换
HABuo2 天前
【YOLOv8】YOLOv8改进系列(11)----替换主干网络之MobileNetV4
人工智能·深度学习·yolo·目标检测·计算机视觉
枉费红笺2 天前
目标检测的训练策略
人工智能·目标检测·计算机视觉
枉费红笺2 天前
目标检测竞赛训练策略解析与拓展
人工智能·目标检测·计算机视觉
Kai HVZ2 天前
《深度学习》——yolov4详解
人工智能·深度学习·yolo
plmm烟酒僧2 天前
基于 RK3588 的 YOLO 多线程推理多级硬件加速引擎框架设计(代码框架和实现细节)
yolo·rk3588·多线程·rkmpp·硬件加速·视频解码·librga