YOLOv11尝鲜测试五分钟极简配置

ultralytics团队在最近又推出了YOLOv11,不知道在有生之年能不能看到YOLOv100呢哈哈。

根据官方文档,在 Python>=3.8并且PyTorch>=1.8的环境下即可安装YOLOv11,因此之前YOLOv8的环境是可以直接用的。

安装YOLOv11:

bash 复制代码
pip install ultralytics

命令行测试:

bash 复制代码
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

或者

bash 复制代码
yolo predict model=yolo11n.pt source='=bus.jpg'

得到结果:

bash 复制代码
Ultralytics 8.3.1 🚀 Python-3.9.19 torch-1.8.0+cu111 CUDA:0 (NVIDIA GeForce RTX 3070 Laptop GPU, 8192MiB)
YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs

image 1/1 D:\document\VScode_workspace\ultralytics-8.3.1\bus.jpg: 640x480 4 persons, 1 bus, 0.0ms
Speed: 11.5ms preprocess, 0.0ms inference, 0.0ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict
VS Code: view Ultralytics VS Code Extension ⚡ at https://docs.ultralytics.com/integrations/vscode

python脚本测试:

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("zidane.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model

测试结果如下:

相关推荐
unix2linux1 小时前
YOLO v5 Series - Image & Video Storage ( Openresty + Lua)
yolo·lua·openresty
菠菠萝宝3 小时前
【YOLOv8】安卓端部署-1-项目介绍
android·java·c++·yolo·目标检测·目标跟踪·kotlin
ZZZZ_Y_4 小时前
YOLOv5指定标签框背景颜色和标签字
yolo
Eric.Lee20217 小时前
数据集-目标检测系列- 花卉 玫瑰 检测数据集 rose >> DataBall
人工智能·目标检测·计算机视觉
红色的山茶花15 小时前
YOLOv8-ultralytics-8.2.103部分代码阅读笔记-conv.py
笔记·yolo
Eric.Lee202116 小时前
数据集-目标检测系列- 花卉 鸡蛋花 检测数据集 frangipani >> DataBall
人工智能·python·yolo·目标检测·计算机视觉·鸡蛋花检查
阿_旭18 小时前
【模型级联】YOLO-World与SAM2通过文本实现指定目标的零样本分割
yolo·yolo-world·sam2
CSBLOG1 天前
OpenCV、YOLO、VOC、COCO之间的关系和区别
人工智能·opencv·yolo
2zcode1 天前
基于YOLOv8深度学习的医学影像骨折检测诊断系统研究与实现(PyQt5界面+数据集+训练代码)
人工智能·深度学习·yolo
深度学习lover2 天前
<项目代码>YOLOv8 草莓成熟识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·草莓成熟识别