YOLOv11尝鲜测试五分钟极简配置

ultralytics团队在最近又推出了YOLOv11,不知道在有生之年能不能看到YOLOv100呢哈哈。

根据官方文档,在 Python>=3.8并且PyTorch>=1.8的环境下即可安装YOLOv11,因此之前YOLOv8的环境是可以直接用的。

安装YOLOv11:

bash 复制代码
pip install ultralytics

命令行测试:

bash 复制代码
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

或者

bash 复制代码
yolo predict model=yolo11n.pt source='=bus.jpg'

得到结果:

bash 复制代码
Ultralytics 8.3.1 🚀 Python-3.9.19 torch-1.8.0+cu111 CUDA:0 (NVIDIA GeForce RTX 3070 Laptop GPU, 8192MiB)
YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs

image 1/1 D:\document\VScode_workspace\ultralytics-8.3.1\bus.jpg: 640x480 4 persons, 1 bus, 0.0ms
Speed: 11.5ms preprocess, 0.0ms inference, 0.0ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict
VS Code: view Ultralytics VS Code Extension ⚡ at https://docs.ultralytics.com/integrations/vscode

python脚本测试:

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("zidane.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model

测试结果如下:

相关推荐
格林威17 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现道路汽车的检测识别(C#代码,UI界面版)
人工智能·深度学习·数码相机·yolo·视觉检测
一方热衷.1 天前
YOLOv8/YOLOv11 C++ OpenCV DNN推理
c++·opencv·yolo
2501_924732871 天前
光伏热斑误检率↓79%!陌讯多模态融合算法在智慧能源的落地优化
算法·目标检测·计算机视觉·能源
Blossom.1182 天前
基于深度学习的医学图像分析:使用YOLOv5实现医学图像目标检测
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉·数据挖掘
2501_924877622 天前
智慧零售商品识别准确率↑32%:陌讯多模态融合算法实战解析
大数据·算法·目标检测·计算机视觉·视觉检测·边缘计算
Stuomasi_xiaoxin2 天前
YOLOv13 汉化优化部署版本:超图增强自适应视觉感知的目标检测系统
人工智能·yolo·目标检测·计算机视觉·目标跟踪
FF-Studio2 天前
25年电赛C题 发挥部分 YOLOv8方案&数据集
python·深度学习·yolo
钱彬 (Qian Bin)2 天前
《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——8. AI赋能(下):在Qt中部署YOLOv8模型
人工智能·qt·yolo·qml·qt quick·工业质检·螺丝瑕疵检测
Blossom.1182 天前
基于深度学习的医学图像分析:使用CycleGAN实现图像到图像的转换
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·语音识别
go54631584653 天前
离散扩散模型在数独问题上的复现与应用
线性代数·算法·yolo·生成对抗网络·矩阵