YOLOv11尝鲜测试五分钟极简配置

ultralytics团队在最近又推出了YOLOv11,不知道在有生之年能不能看到YOLOv100呢哈哈。

根据官方文档,在 Python>=3.8并且PyTorch>=1.8的环境下即可安装YOLOv11,因此之前YOLOv8的环境是可以直接用的。

安装YOLOv11:

bash 复制代码
pip install ultralytics

命令行测试:

bash 复制代码
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

或者

bash 复制代码
yolo predict model=yolo11n.pt source='=bus.jpg'

得到结果:

bash 复制代码
Ultralytics 8.3.1 🚀 Python-3.9.19 torch-1.8.0+cu111 CUDA:0 (NVIDIA GeForce RTX 3070 Laptop GPU, 8192MiB)
YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs

image 1/1 D:\document\VScode_workspace\ultralytics-8.3.1\bus.jpg: 640x480 4 persons, 1 bus, 0.0ms
Speed: 11.5ms preprocess, 0.0ms inference, 0.0ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict
VS Code: view Ultralytics VS Code Extension ⚡ at https://docs.ultralytics.com/integrations/vscode

python脚本测试:

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("zidane.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model

测试结果如下:

相关推荐
要努力啊啊啊2 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx5 小时前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
埃菲尔铁塔_CV算法12 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
cver1231 天前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷1 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
kyle~1 天前
目标检测在国防和政府的应用实例
人工智能·目标检测·计算机视觉
weixin_377634841 天前
【数据增强】精细化贴图数据增强
人工智能·目标检测·贴图
加油吧zkf1 天前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
一花·一叶2 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币2 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉