python实现DES算法

DES算法

  • 一、算法介绍
    • [1.1 背景](#1.1 背景)
    • [1.2 原理](#1.2 原理)
    • [1.3 基本功能函数](#1.3 基本功能函数)
      • [1.3.1 初始置换函数 I P IP IP](#1.3.1 初始置换函数 I P IP IP)
      • [1.3.2 f f f 轮函数](#1.3.2 f f f 轮函数)
      • [1.3.3 逆初始置换函数 I P − 1 IP^{-1} IP−1](#1.3.3 逆初始置换函数 I P − 1 IP^{-1} IP−1)
    • [1.4 子密钥的生成](#1.4 子密钥的生成)
  • 二、代码实现
    • [2.1 子密钥生成实现](#2.1 子密钥生成实现)
    • [2.2 DES加解密实现](#2.2 DES加解密实现)
    • [2.3 完整代码](#2.3 完整代码)
  • 三、演示效果

一、算法介绍

1.1 背景

DES 算法是由美国 IBM 公司在 20 世纪 70 年代提出,并被美国政府、美国国家标准局和美国国家标准协会采纳和承认的一种标准加密算法。

它属于分组加密算法,即在明文加密和密文解密过程中,信息都是按照固定长度分组后进行处理的。混淆扩散是它采用的两个最重要的安全特性。

混淆是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者统计。扩散是指明文和密钥中每一位信息的变动,都会影响到密文中许多位信息的变动,从而隐藏统计上的特性,增加密码的安全。

1.2 原理

DES 算法将明文分成 64 位大小的众多数据块,即分组长度为 64 位,同时用 64 位密钥(有效密钥 56 位)对 64 位明文信息加密,最终形成 64 位的密文。如果明文长度不足 64 位,则将其扩展为 64 位(如补零等方法)。

具体加密过程,首先是将输入的数据进行初始换位( I P IP IP),即将明文 M M M 中数据的排列顺序按一定的规则重新排列,生成新的数据序列,以打乱原来的次序。然后将变换后的数据平分成左右两部分,左边记为 L 0 L_{0} L0,右边记为 R 0 R_{0} R0,然后对 R 0 R_{0} R0 实行在子密钥(由加密密钥产生)控制下的变换 f f f,结果记为 f ( R 0 , K 1 ) f(R_{0},K_{1}) f(R0,K1),再与 L 0 L_{0} L0 做逐位异或运算,其结果记为 R 1 R_{1} R1, R 0 R_{0} R0 则作为下一轮的 L 1 L_{1} L1。如此循环 16 轮,最后得到 L 16 L_{16} L16、 R 16 R_{16} R16。再对 L 16 L_{16} L16、 R 16 R_{16} R16 实行逆初始置换 I P − 1 IP^{-1} IP−1,即可得到加密数据。

解密过程与此类似,不同之处仅在于子密钥的使用顺序正好相反

DES 全部 16 轮的加密过程如图所示:

1.3 基本功能函数

1.3.1 初始置换函数 I P IP IP

它的作用是把输入的 64 位数据块的排列顺序打乱,每位数据按照下面换位规则重新组合;即将第 58 位换到第 1 位,第 50 位换到第 2 位,......,依次类推;重组后的 64 位输出分为 L 0 L_{0} L0、 R 0 R_{0} R0(左、右)两部分,每部分分别为 32 位。初始置换如表如下所示:

R 0 R_{0} R0 和 K 1 K_{1} K1 经过 变换后的输出结果,再和 L 0 L_{0} L0进行异或运算,输出结果做为 R 1 R_{1} R1, R 0 R_{0} R0 则赋给 L 1 L_{1} L1。 L 1 L_{1} L1 和 R 1 R_{1} R1 同样再做类似运算生成 L 2 L_{2} L2 和 R 2 R_{2} R2,......,经过 16次运算后生成 L 16 L_{16} L16 的 R 16 R_{16} R16。

1.3.2 f f f 轮函数

f f f 轮函数是多个置换函数和替代函数的组合函数,它将 32 位比特的输入变换为 32 位的输出; R i R_{i} Ri 经过扩展运算 E E E 变换后扩展为 48 位的 E ( R i ) E(R_{i}) E(Ri) ,与 K i + 1 K_{i+1} Ki+1 进行异或运算后输出的结果分成 8 组,每组 6 比特的并联 B B B, B B B= B 1 B_{1} B1 B 2 B_{2} B2 B 3 B_{3} B3 B 4 B_{4} B4 B 5 B_{5} B5 B 6 B_{6} B6 B 7 B_{7} B7 B 8 B_{8} B8,再经过 8 个 S S S 盒的选择压缩运算转换为 4 位,8 个 4 位合并为 32 位后再经过 P P P 变换输出为 32 位的 f ( R i , K i + 1 ) f(R_{i},K_{i+1}) f(Ri,Ki+1) 。其中,扩展运算 E E E 与置换 P P P 主要作用是增加算法的扩展效果。

f f f 轮函数处理流程如下图所示:

1.3.3 逆初始置换函数 I P − 1 IP^{-1} IP−1

它将 L 16 L_{16} L16 和 R 16 R_{16} R16 作为输入,进行逆初始换位得到密文输出。逆初始换位是初始位的逆运算,逆初始置换的换位规则如下表所示:

1.4 子密钥的生成

具体子密钥的产生流程如图所示:

输入的初始密钥值为 64 位;但 DES 算法规定,64 位初始密钥中第 8、16、......、64 位是奇偶检验位,不参与 DES 运算。所以,实际可用位数只有56 位,经过缩小选择换位表即置换选择 P C 1 PC1 PC1 的变换后,初始密钥的位数由 64 位变成了 56 位,将其平分为两部分 C 0 C_{0} C0(28 位)、 D 0 D_{0} D0(28 位)。然后,分别进行第 1 次循环左移,得到 C 1 C_{1} C1、 D 1 D_{1} D1,需要注意的是,循环左移需经过 16 轮次,第 i i i 轮迭代时对应的左移位数要依据移位表的规则进行。接着,将 C 1 C_{1} C1、 D 1 D_{1} D1 合并后得到 56 位的输出结果,再经过缩小选择换位表即置换选择 P C 2 PC2 PC2 ,从而得到了密钥 K 1 K_{1} K1(48 位),依次类推,便可得到 K 2 K_{2} K2、......、 K 16 K_{16} K16。

二、代码实现

2.1 子密钥生成实现

python 复制代码
# ========================================
# 一、子密钥生成
# (1) 初始置换 64->56
# 64位的种子密钥经过PC_1置换后,生成56位的密钥
# (2) 划分 56->(28,28)
# 经过初始置换后的56位密钥被均分成C0和D0两部分
# (3) 循环左移
# 第一轮,C0和D0根据移位次数表各自进行循环左移
# 得到C1和D1
# 每一轮的C和D值是由上一轮的C和D值循环左移得到的
# (4) 合并 (28,28)->56->48
# 左移后的两部分再次合并,通过一个选择压缩表(PC_2)
# 得到这一轮的子密钥
# (5)重复3、4操作,最终得到16个子密钥
# ========================================

# 置换选择表1(PC_1) 64->56
PC_1 = [57, 49, 41, 33, 25, 17, 9,
        1, 58, 50, 42, 34, 26, 18,
        10, 2, 59, 51, 43, 35, 27,
        19, 11, 3, 60, 52, 44, 36,
        63, 55, 47, 39, 31, 23, 15,
        7, 62, 54, 46, 38, 30, 22,
        14, 6, 61, 53, 45, 37, 29,
        21, 13, 5, 28, 20, 12, 4
        ]

# 选择压缩表2(PC_2) 56->48
PC_2 = [14, 17, 11, 24, 1, 5, 3, 28,
        15, 6, 21, 10, 23, 19, 12, 4,
        26, 8, 16, 7, 27, 20, 13, 2,
        41, 52, 31, 37, 47, 55, 30, 40,
        51, 45, 33, 48, 44, 49, 39, 56,
        34, 53, 46, 42, 50, 36, 29, 32
        ]

# 移位次数表
shift_num = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1]


def pc_1_change(bin_key):
    """初始置换

    64位的种子密钥经过PC_1置换后,生成56位的密钥
    """
    return [bin_key[i - 1] for i in PC_1]  # 列表形式


def shift_left(bin_key, num):
    """实现C和D的循环左移"""
    return bin_key[num:] + bin_key[:num]


def pc_2_change(bin_key):
    """选择压缩

    56位的密钥经过PC_2压缩,生成48位子密钥
    """
    return ''.join([bin_key[i - 1] for i in PC_2])  # 列表转字符串


def get_subkey_list(bin_key):
    """生成16轮的加解子密钥"""
    subkey_list = []  # 存储16轮子密钥
    # 1. 初始置换 64->58
    temp = pc_1_change(bin_key)
    # 2. 循环左移
    for i in shift_num:
        temp[:28] = shift_left(temp[:28], i)  # C部分循环左移
        temp[28:] = shift_left(temp[28:], i)  # D部分循环左移
        subkey_list.append(pc_2_change(temp))  # 生成子密钥
    return subkey_list

2.2 DES加解密实现

python 复制代码
# ========================================
# 二、DES加解密实现
# ========================================

# 初始置换表IP 64->64
IP = [58, 50, 42, 34, 26, 18, 10, 2,
      60, 52, 44, 36, 28, 20, 12, 4,
      62, 54, 46, 38, 30, 22, 14, 6,
      64, 56, 48, 40, 32, 24, 16, 8,
      57, 49, 41, 33, 25, 17, 9, 1,
      59, 51, 43, 35, 27, 19, 11, 3,
      61, 53, 45, 37, 29, 21, 13, 5,
      63, 55, 47, 39, 31, 23, 15, 7
      ]

# 逆置换表_IP 64->64
_IP = [40, 8, 48, 16, 56, 24, 64, 32, 39,
       7, 47, 15, 55, 23, 63, 31, 38, 6,
       46, 14, 54, 22, 62, 30, 37, 5, 45,
       13, 53, 21, 61, 29, 36, 4, 44, 12,
       52, 20, 60, 28, 35, 3, 43, 11, 51,
       19, 59, 27, 34, 2, 42, 10, 50, 18,
       58, 26, 33, 1, 41, 9, 49, 17, 57, 25
       ]

# 扩展置换表E 32->48
E = [32, 1, 2, 3, 4, 5, 4, 5,
     6, 7, 8, 9, 8, 9, 10, 11,
     12, 13, 12, 13, 14, 15, 16, 17,
     16, 17, 18, 19, 20, 21, 20, 21,
     22, 23, 24, 25, 24, 25, 26, 27,
     28, 29, 28, 29, 30, 31, 32, 1
     ]

# S盒 48->32
S1 = [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
      0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
      4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
      15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
      ]
S2 = [15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
      3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
      0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
      13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
      ]
S3 = [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
      13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
      13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
      1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
      ]
S4 = [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
      13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
      10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
      3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
      ]
S5 = [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
      14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
      4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
      11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
      ]
S6 = [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
      10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
      9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
      4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
      ]
S7 = [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
      13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
      1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
      6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
      ]
S8 = [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
      1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
      7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
      2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
      ]
S = [S1, S2, S3, S4, S5, S6, S7, S8]

# P盒
P = [16, 7, 20, 21, 29, 12, 28, 17,
     1, 15, 23, 26, 5, 18, 31, 10,
     2, 8, 24, 14, 32, 27, 3, 9,
     19, 13, 30, 6, 22, 11, 4, 25
     ]


# encrypt
def ip_change(bin_text):
    """初始置换"""
    return [bin_text[i - 1] for i in IP]


def s_box(bin_result):
    """S盒替换"""
    int_result = []
    result = ''
    for i in range(8):
        # 二进制行号
        bin_row = bin_result[i][0] + bin_result[i][5]
        # 二进制列号
        bin_col = ''.join(bin_result[i][j] for j in range(1, 5))
        # 获取对应的十进制数
        int_result.append(S[i][16 * int(bin_row, base=2) + int(bin_col, base=2)])
        # 十进制转成二进制
        result += bin(int_result[-1])[2:].zfill(4)
    return result


def p_box(result):
    """P盒置换"""
    return ''.join(result[i - 1] for i in P)


def f(R, bin_key):
    """轮函数f()"""
    # 1.将R由32位扩展成48位
    R_ext = [R[i - 1] for i in E]
    # 2.与子密钥进行逐位异或
    bin_temp = [str(int(r) ^ int(k)) for r, k in zip(R_ext, bin_key)]
    # 6个字符为一组,共8组
    bin_result = [''.join(bin_temp[i:i + 6]) for i in range(0, len(bin_temp), 6)]
    # 3.S盒替换 48->32
    result = s_box(bin_result)
    # 4.P盒置换 32->32
    return p_box(result)


def _ip_change(bin_text):
    """进行IP-1逆置换"""
    return ''.join(bin_text[i - 1] for i in _IP)


def des_cipher(bin_text, bin_key, reverse_keys=False):
    """通用DES加密解密函数"""
    # 1. 初始置换IP
    bin_text = ip_change(bin_text)
    # 2. 分成左右两部分L、R
    L, R = bin_text[:32], bin_text[32:]
    # 3. 获得16轮子密钥
    subkey_list = get_subkey_list(bin_key)
    if reverse_keys:
        subkey_list = subkey_list[::-1]  # 解密时反转子密钥列表
    # 4. 进行16轮迭代
    for i in subkey_list:
        R_temp = R
        # 轮函数f()结果和L进行异或
        R = ''.join(str(int(r) ^ int(l)) for r, l in zip(f(R, i), L))
        L = R_temp
    # 5. 进行IP-1逆置换 64->64
    return _ip_change(R + L)  # 输出二进制字符串


# 使用示例
def str2bin(text):
    """字符串转二进制字符串"""
    return ''.join(bin(byte)[2:].zfill(8) for byte in text.encode())


def bin2str(bin_text):
    """二进制字符串转字符串"""
    # 1.将二进制字符串按8位分割,并转换为字节数组
    byte_array = bytearray(int(i, 2) for i in re.findall(r'.{8}', bin_text) if int(i, 2) != 0)
    # 2.将字节序列解码为字符串
    return byte_array.decode()


def is_valid_key(key):
    """检查密钥是否有效 64bit"""
    return len(key.encode()) == 8


def des_encrypt(plaintext, key):
    """DES加密"""
    # 1.明文转成二进制字符串, 0填充至64的倍数
    bin_plaintext = str2bin(plaintext)
    padding_len = (64 - (len(bin_plaintext) % 64)) % 64
    bin_padding_plaintext = bin_plaintext + '0' * padding_len
    # 2.进行64位分组加密
    bin_group_64 = re.findall(r'.{64}', bin_padding_plaintext)
    bin_ciphertext = ''
    for g in bin_group_64:
        bin_ciphertext += des_cipher(g, str2bin(key))
    # 3.密文转为16进制输出
    bin_group_4 = re.findall(r'.{4}', bin_ciphertext)
    hex_ciphertext = ''
    for g in bin_group_4:
        hex_ciphertext += format(int(g, 2), 'x')
    return hex_ciphertext


def des_decrypt(hex_ciphertext, key):
    """DES解密"""
    # 1.16进制密文转为2进制字符串
    bin_ciphertext = ''.join(bin(int(h, 16))[2:].zfill(4) for h in hex_ciphertext)
    # 2.进行64位分组解密
    bin_group_64 = re.findall(r'.{64}', bin_ciphertext)
    bin_deciphertext = ''
    for g in bin_group_64:
        bin_deciphertext += des_cipher(g, str2bin(key), reverse_keys=True)
    # 3.将解密密文转为字符串输出
    return bin2str(bin_deciphertext)

2.3 完整代码

python 复制代码
import re

# ========================================
# 一、子密钥生成
# (1) 初始置换 64->56
# 64位的种子密钥经过PC_1置换后,生成56位的密钥
# (2) 划分 56->(28,28)
# 经过初始置换后的56位密钥被均分成C0和D0两部分
# (3) 循环左移
# 第一轮,C0和D0根据移位次数表各自进行循环左移
# 得到C1和D1
# 每一轮的C和D值是由上一轮的C和D值循环左移得到的
# (4) 合并 (28,28)->56->48
# 左移后的两部分再次合并,通过一个选择压缩表(PC_2)
# 得到这一轮的子密钥
# (5)重复3、4操作,最终得到16个子密钥
# ========================================

# 置换选择表1(PC_1) 64->56
PC_1 = [57, 49, 41, 33, 25, 17, 9,
        1, 58, 50, 42, 34, 26, 18,
        10, 2, 59, 51, 43, 35, 27,
        19, 11, 3, 60, 52, 44, 36,
        63, 55, 47, 39, 31, 23, 15,
        7, 62, 54, 46, 38, 30, 22,
        14, 6, 61, 53, 45, 37, 29,
        21, 13, 5, 28, 20, 12, 4
        ]

# 选择压缩表2(PC_2) 56->48
PC_2 = [14, 17, 11, 24, 1, 5, 3, 28,
        15, 6, 21, 10, 23, 19, 12, 4,
        26, 8, 16, 7, 27, 20, 13, 2,
        41, 52, 31, 37, 47, 55, 30, 40,
        51, 45, 33, 48, 44, 49, 39, 56,
        34, 53, 46, 42, 50, 36, 29, 32
        ]

# 移位次数表
shift_num = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1]


def pc_1_change(bin_key):
    """初始置换

    64位的种子密钥经过PC_1置换后,生成56位的密钥
    """
    return [bin_key[i - 1] for i in PC_1]  # 列表形式


def shift_left(bin_key, num):
    """实现C和D的循环左移"""
    return bin_key[num:] + bin_key[:num]


def pc_2_change(bin_key):
    """选择压缩

    56位的密钥经过PC_2压缩,生成48位子密钥
    """
    return ''.join([bin_key[i - 1] for i in PC_2])  # 列表转字符串


def get_subkey_list(bin_key):
    """生成16轮的加解子密钥"""
    subkey_list = []  # 存储16轮子密钥
    # 1. 初始置换 64->58
    temp = pc_1_change(bin_key)
    # 2. 循环左移
    for i in shift_num:
        temp[:28] = shift_left(temp[:28], i)  # C部分循环左移
        temp[28:] = shift_left(temp[28:], i)  # D部分循环左移
        subkey_list.append(pc_2_change(temp))  # 生成子密钥
    return subkey_list


# ========================================
# 二、DES加解密实现
# ========================================

# 初始置换表IP 64->64
IP = [58, 50, 42, 34, 26, 18, 10, 2,
      60, 52, 44, 36, 28, 20, 12, 4,
      62, 54, 46, 38, 30, 22, 14, 6,
      64, 56, 48, 40, 32, 24, 16, 8,
      57, 49, 41, 33, 25, 17, 9, 1,
      59, 51, 43, 35, 27, 19, 11, 3,
      61, 53, 45, 37, 29, 21, 13, 5,
      63, 55, 47, 39, 31, 23, 15, 7
      ]

# 逆置换表_IP 64->64
_IP = [40, 8, 48, 16, 56, 24, 64, 32, 39,
       7, 47, 15, 55, 23, 63, 31, 38, 6,
       46, 14, 54, 22, 62, 30, 37, 5, 45,
       13, 53, 21, 61, 29, 36, 4, 44, 12,
       52, 20, 60, 28, 35, 3, 43, 11, 51,
       19, 59, 27, 34, 2, 42, 10, 50, 18,
       58, 26, 33, 1, 41, 9, 49, 17, 57, 25
       ]

# 扩展置换表E 32->48
E = [32, 1, 2, 3, 4, 5, 4, 5,
     6, 7, 8, 9, 8, 9, 10, 11,
     12, 13, 12, 13, 14, 15, 16, 17,
     16, 17, 18, 19, 20, 21, 20, 21,
     22, 23, 24, 25, 24, 25, 26, 27,
     28, 29, 28, 29, 30, 31, 32, 1
     ]

# S盒 48->32
S1 = [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
      0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
      4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
      15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
      ]
S2 = [15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
      3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
      0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
      13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
      ]
S3 = [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
      13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
      13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
      1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
      ]
S4 = [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
      13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
      10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
      3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
      ]
S5 = [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
      14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
      4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
      11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
      ]
S6 = [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
      10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
      9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
      4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
      ]
S7 = [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
      13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
      1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
      6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
      ]
S8 = [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
      1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
      7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
      2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
      ]
S = [S1, S2, S3, S4, S5, S6, S7, S8]

# P盒
P = [16, 7, 20, 21, 29, 12, 28, 17,
     1, 15, 23, 26, 5, 18, 31, 10,
     2, 8, 24, 14, 32, 27, 3, 9,
     19, 13, 30, 6, 22, 11, 4, 25
     ]


# encrypt
def ip_change(bin_text):
    """初始置换"""
    return [bin_text[i - 1] for i in IP]


def s_box(bin_result):
    """S盒替换"""
    int_result = []
    result = ''
    for i in range(8):
        # 二进制行号
        bin_row = bin_result[i][0] + bin_result[i][5]
        # 二进制列号
        bin_col = ''.join(bin_result[i][j] for j in range(1, 5))
        # 获取对应的十进制数
        int_result.append(S[i][16 * int(bin_row, base=2) + int(bin_col, base=2)])
        # 十进制转成二进制
        result += bin(int_result[-1])[2:].zfill(4)
    return result


def p_box(result):
    """P盒置换"""
    return ''.join(result[i - 1] for i in P)


def f(R, bin_key):
    """轮函数f()"""
    # 1.将R由32位扩展成48位
    R_ext = [R[i - 1] for i in E]
    # 2.与子密钥进行逐位异或
    bin_temp = [str(int(r) ^ int(k)) for r, k in zip(R_ext, bin_key)]
    # 6个字符为一组,共8组
    bin_result = [''.join(bin_temp[i:i + 6]) for i in range(0, len(bin_temp), 6)]
    # 3.S盒替换 48->32
    result = s_box(bin_result)
    # 4.P盒置换 32->32
    return p_box(result)


def _ip_change(bin_text):
    """进行IP-1逆置换"""
    return ''.join(bin_text[i - 1] for i in _IP)


def des_cipher(bin_text, bin_key, reverse_keys=False):
    """通用DES加密解密函数"""
    # 1. 初始置换IP
    bin_text = ip_change(bin_text)
    # 2. 分成左右两部分L、R
    L, R = bin_text[:32], bin_text[32:]
    # 3. 获得16轮子密钥
    subkey_list = get_subkey_list(bin_key)
    if reverse_keys:
        subkey_list = subkey_list[::-1]  # 解密时反转子密钥列表
    # 4. 进行16轮迭代
    for i in subkey_list:
        R_temp = R
        # 轮函数f()结果和L进行异或
        R = ''.join(str(int(r) ^ int(l)) for r, l in zip(f(R, i), L))
        L = R_temp
    # 5. 进行IP-1逆置换 64->64
    return _ip_change(R + L)  # 输出二进制字符串


# 使用示例
def str2bin(text):
    """字符串转二进制字符串"""
    return ''.join(bin(byte)[2:].zfill(8) for byte in text.encode())


def bin2str(bin_text):
    """二进制字符串转字符串"""
    # 1.将二进制字符串按8位分割,并转换为字节数组
    byte_array = bytearray(int(i, 2) for i in re.findall(r'.{8}', bin_text) if int(i, 2) != 0)
    # 2.将字节序列解码为字符串
    return byte_array.decode()


def is_valid_key(key):
    """检查密钥是否有效 64bit"""
    return len(key.encode()) == 8


def des_encrypt(plaintext, key):
    """DES加密"""
    # 1.明文转成二进制字符串, 0填充至64的倍数
    bin_plaintext = str2bin(plaintext)
    padding_len = (64 - (len(bin_plaintext) % 64)) % 64
    bin_padding_plaintext = bin_plaintext + '0' * padding_len
    # 2.进行64位分组加密
    bin_group_64 = re.findall(r'.{64}', bin_padding_plaintext)
    bin_ciphertext = ''
    for g in bin_group_64:
        bin_ciphertext += des_cipher(g, str2bin(key))
    # 3.密文转为16进制输出
    bin_group_4 = re.findall(r'.{4}', bin_ciphertext)
    hex_ciphertext = ''
    for g in bin_group_4:
        hex_ciphertext += format(int(g, 2), 'x')
    return hex_ciphertext


def des_decrypt(hex_ciphertext, key):
    """DES解密"""
    # 1.16进制密文转为2进制字符串
    bin_ciphertext = ''.join(bin(int(h, 16))[2:].zfill(4) for h in hex_ciphertext)
    # 2.进行64位分组解密
    bin_group_64 = re.findall(r'.{64}', bin_ciphertext)
    bin_deciphertext = ''
    for g in bin_group_64:
        bin_deciphertext += des_cipher(g, str2bin(key), reverse_keys=True)
    # 3.将解密密文转为字符串输出
    return bin2str(bin_deciphertext)


def des_run():
    """DES启动界面"""
    flag = True
    while flag:
        print('=' * 3, "DES加密解密", '=' * 3)
        print('[1]加密')
        print('[2]解密')
        print('[0]退出')
        choice = input('请输入你的选择:')
        match choice:
            case '0':
                flag = False
            case '1':
                plaintext = input('请输入明文:')
                key = input('请输入密钥(64bit):')
                if not is_valid_key(key):
                    print('密钥长度错误')
                    continue
                ciphertext = des_encrypt(plaintext, key)
                print(f'密文:{ciphertext}')
            case '2':
                ciphertext = input('请输入密文:')
                key = input('请输入密钥(64bit):')
                if not is_valid_key(key):
                    print('密钥长度错误')
                    continue
                print(f'解密:{des_decrypt(ciphertext, key)}')
            case _:
                print('输入错误')
    print('=' * 15)


if __name__ == '__main__':
    des_run()

三、演示效果

相关推荐
周杰伦_Jay1 分钟前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
阿俊仔(摸鱼版)4 分钟前
Python 常用运维模块之Shutil 模块
linux·服务器·python·自动化·云服务器
MarsBighead6 分钟前
(二)PosrgreSQL: Python3 连接Pgvector出错排查
python·postgresql·向量数据库·pgvector
凭君语未可13 分钟前
豆包MarsCode:小C点菜问题
算法
深蓝海拓26 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
C语言魔术师33 分钟前
【小游戏篇】三子棋游戏
前端·算法·游戏
自由自在的小Bird33 分钟前
简单排序算法
数据结构·算法·排序算法
无须logic ᭄34 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
Channing Lewis1 小时前
flask常见问答题
后端·python·flask
Channing Lewis1 小时前
如何保护 Flask API 的安全性?
后端·python·flask