图像人脸与视频人脸匹配度检测

python 复制代码
import cv2
import dlib
import numpy as np
import os
from pathlib import Path

# 加载预训练模型
face_recognition_model = "dlib_face_recognition_resnet_model_v1.dat"
face_recognition_net = dlib.face_recognition_model_v1(face_recognition_model)

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

def load_image(file_path):
    """加载图像"""
    image = cv2.imread(file_path)
    return image

def get_face_encoding(image):
    """获取图像中第一个脸部的编码"""
    face_rects, scores, idx = detector.run(image, 1)
    if len(face_rects) > 0:
        shape = predictor(image, face_rects[0])
        return np.array(face_recognition_net.compute_face_descriptor(image, shape, 100))
    return None

def compare_faces(known_face_encoding, unknown_image_path):
    """比较两张图像是否属于同一人"""
    unknown_image = load_image(unknown_image_path)
    unknown_face_encoding = get_face_encoding(unknown_image)
    
    if known_face_encoding is not None and unknown_face_encoding is not None:
        distance = np.linalg.norm(known_face_encoding - unknown_face_encoding)
        threshold = 0.3  # 根据实际情况调整阈值
        return distance <= threshold
    return False

def extract_first_frame(video_path):
    """从视频中提取第一帧"""
    cap = cv2.VideoCapture(str(video_path))
    ret, frame = cap.read()
    if not ret:
        raise ValueError(f"Failed to read the video {video_path}")
    return frame

def main():
    # 定义目标目录
    TARGET_DIR = "special"
    os.makedirs(TARGET_DIR, exist_ok=True)

    # 加载参考图像
    known_image_path = "example.png"  # 请替换为你的样例图片路径
    known_image = load_image(known_image_path)
    known_face_encoding = get_face_encoding(known_image)

    # 遍历当前目录下的所有直接子文件中的 MP4 文件
    for mp4_file in Path('.').iterdir():
        if mp4_file.is_file() and mp4_file.suffix.lower() == '.mp4':
            try:
                # 从视频中提取第一帧
                frame = extract_first_frame(mp4_file)
                
                # 将第一帧保存为临时文件以便后续处理
                temp_image_path = "temp_frame.jpg"
                cv2.imwrite(temp_image_path, frame)
                
                # 比较第一帧中的人脸是否与参考图像中的人脸匹配
                if compare_faces(known_face_encoding, temp_image_path):
                    print(f"Face in {mp4_file.name} matches the reference image.")
                    # 移动匹配的视频到 special 文件夹
                    mp4_file.rename(Path(TARGET_DIR) / mp4_file.name)
                else:
                    print(f"Face in {mp4_file.name} does not match the reference image.")
                    
                # 清理临时文件
                os.remove(temp_image_path)
            except Exception as e:
                print(f"Error processing {mp4_file.name}: {str(e)}")

if __name__ == "__main__":
    main()

wget依赖包:
shape_predictor_68_face_landmarks.dat
dlib_face_recognition_resnet_model_v1.dat

相关推荐
一行注释也不写1 天前
【卷积层和池化层在CNN中的作用】
深度学习·计算机视觉·cnn
曼巴UE51 天前
UE Sequencer,MediaPlay的使用经验总结
ue5·音视频·ue
2501_936146041 天前
目标检测论文解读复现之六基于RetinaNet的考拉检测方法
人工智能·目标检测·计算机视觉
敢敢のwings1 天前
NeoVerse:用百万单目视频打开4D世界模型的大门
音视频
应用市场1 天前
Intel Core Ultra 9做目标检测够用吗?CPU+GPU+NPU三路并发实测
人工智能·目标检测·计算机视觉
一招定胜负1 天前
基于OpenCV的银行卡号识别项目实战
人工智能·opencv·计算机视觉
gorgeous(๑>؂<๑)1 天前
【中国科学院光电研究所-张建林组-AAAI26】追踪不稳定目标:基于外观引导的运动建模在无人机拍摄视频中实现稳健的多目标跟踪
人工智能·机器学习·计算机视觉·目标跟踪·无人机
美狐美颜sdk1 天前
企业级直播美颜SDK与动态贴纸SDK开发技术方案拆解与落地实践
android·人工智能·计算机视觉·第三方美颜sdk·人脸美型sdk
一招定胜负1 天前
图像金字塔与直方图
图像处理·opencv·计算机视觉
AAD555888991 天前
基于YOLO11的自然景观多类别目标检测系统 山脉海洋湖泊森林建筑物桥梁道路农田沙漠海滩等多种景观元素检测识别
人工智能·目标检测·计算机视觉