数据分析 | 热度编码和标签编码

热度编码 (One-Hot Encoding)和标签编码 (Label Encoding)是两种常用的将分类变量转换为数值型变量的方法。下面是对这两种编码

方式的详细解释及Python代码示例。

1. 热度编码(One-Hot Encoding)

定义

热度编码将每个类别转换为一个新的二进制变量(0或1)。每个类别都有一个独立的列,表示该样本是否属于该类别。

优点

  • 不会引入顺序关系,适合无序类别(如颜色、性别等)。
  • 保持了每个类别的独立性。

缺点

  • 对于类别数量较多的变量,可能会导致维度爆炸(即生成大量的虚拟变量)。

Python示例

python 复制代码
import pandas as pd

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 使用独热编码
one_hot_encoded_data = pd.get_dummies(data, columns=['color'], drop_first=True)

print(one_hot_encoded_data)

输出

复制代码
   color_blue  color_green
0           0            0
1           1            0
2           0            1
3           1            0
4           0            0

解释

  • pd.get_dummies(...)函数将color列中的每种颜色转换为新的二进制列(color_bluecolor_green)。
  • drop_first=True参数删除了第一个类别(red),从而避免了多重共线性。

2. 标签编码(Label Encoding)

定义

标签编码将每个类别转换为一个唯一的整数值。这种方法对每个类别分配一个数字,通常从0开始。

优点

  • 简单且节省内存。
  • 在某些模型(如树模型)中,能够处理有序类别。

缺点

  • 对于无序类别,可能会引入不必要的顺序关系,使得模型误解类别之间的关系。

Python示例

python 复制代码
from sklearn.preprocessing import LabelEncoder

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 创建LabelEncoder实例
label_encoder = LabelEncoder()

# 使用标签编码
data['color_encoded'] = label_encoder.fit_transform(data['color'])

print(data)

输出

复制代码
   color  color_encoded
0    red              2
1   blue              0
2  green              1
3   blue              0
4    red              2

解释

  • LabelEncodercolor列中的每种颜色转换为唯一的整数值。 red被编码为2,blue为0,green为1。
  • 这种方法在处理有序类别时可能有意义,但在处理无序类别时需要谨慎。

总结

  • 热度编码(One-Hot Encoding)

    • 将每个类别转换为独立的二进制列,适合无序类别。
    • 可能导致维度爆炸。
  • 标签编码(Label Encoding)

    • 将每个类别转换为唯一的整数,适合有序类别。
    • 可能引入不必要的顺序关系,适合某些模型(如树模型)使用。

选择合适的编码方式取决于数据的特性和后续模型的需求。在无序类别的情况下,热度编码通常是更好的选择,而标签编码适用于有序

类别。

相关推荐
Lun3866buzha4 小时前
YOLOv8-SEG-FastNet-BiFPN实现室内物品识别与分类:背包、修正带、立方体和铅笔盒检测指南
yolo·分类·数据挖掘
Faker66363aaa5 小时前
基于YOLOv8-GhostHGNetV2的绝缘子破损状态检测与分类系统实现
yolo·分类·数据挖掘
说私域5 小时前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
墨理学AI6 小时前
一文学会一点python数据分析-小白原地进阶(mysql 安装 - mysql - python 数据分析 - 学习阶段梳理)
python·mysql·数据分析
databook6 小时前
像搭积木一样思考:数据科学中的“自下而上”之道
python·数据挖掘·数据分析
wang_yb6 小时前
像搭积木一样思考:数据科学中的“自下而上”之道
数据分析·databook
啊阿狸不会拉杆6 小时前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
玄同7657 小时前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
Katecat996638 小时前
蚊子幼虫与蛹的自动检测与分类-VFNet_R101_FPN_MS-2x_COCO实现详解
人工智能·数据挖掘
Liue6123123118 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘