数据分析 | 热度编码和标签编码

热度编码 (One-Hot Encoding)和标签编码 (Label Encoding)是两种常用的将分类变量转换为数值型变量的方法。下面是对这两种编码

方式的详细解释及Python代码示例。

1. 热度编码(One-Hot Encoding)

定义

热度编码将每个类别转换为一个新的二进制变量(0或1)。每个类别都有一个独立的列,表示该样本是否属于该类别。

优点

  • 不会引入顺序关系,适合无序类别(如颜色、性别等)。
  • 保持了每个类别的独立性。

缺点

  • 对于类别数量较多的变量,可能会导致维度爆炸(即生成大量的虚拟变量)。

Python示例

python 复制代码
import pandas as pd

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 使用独热编码
one_hot_encoded_data = pd.get_dummies(data, columns=['color'], drop_first=True)

print(one_hot_encoded_data)

输出

复制代码
   color_blue  color_green
0           0            0
1           1            0
2           0            1
3           1            0
4           0            0

解释

  • pd.get_dummies(...)函数将color列中的每种颜色转换为新的二进制列(color_bluecolor_green)。
  • drop_first=True参数删除了第一个类别(red),从而避免了多重共线性。

2. 标签编码(Label Encoding)

定义

标签编码将每个类别转换为一个唯一的整数值。这种方法对每个类别分配一个数字,通常从0开始。

优点

  • 简单且节省内存。
  • 在某些模型(如树模型)中,能够处理有序类别。

缺点

  • 对于无序类别,可能会引入不必要的顺序关系,使得模型误解类别之间的关系。

Python示例

python 复制代码
from sklearn.preprocessing import LabelEncoder

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 创建LabelEncoder实例
label_encoder = LabelEncoder()

# 使用标签编码
data['color_encoded'] = label_encoder.fit_transform(data['color'])

print(data)

输出

复制代码
   color  color_encoded
0    red              2
1   blue              0
2  green              1
3   blue              0
4    red              2

解释

  • LabelEncodercolor列中的每种颜色转换为唯一的整数值。 red被编码为2,blue为0,green为1。
  • 这种方法在处理有序类别时可能有意义,但在处理无序类别时需要谨慎。

总结

  • 热度编码(One-Hot Encoding)

    • 将每个类别转换为独立的二进制列,适合无序类别。
    • 可能导致维度爆炸。
  • 标签编码(Label Encoding)

    • 将每个类别转换为唯一的整数,适合有序类别。
    • 可能引入不必要的顺序关系,适合某些模型(如树模型)使用。

选择合适的编码方式取决于数据的特性和后续模型的需求。在无序类别的情况下,热度编码通常是更好的选择,而标签编码适用于有序

类别。

相关推荐
databook6 小时前
数据会说谎?三大推断方法帮你“审问”数据真相
后端·python·数据分析
电商API大数据接口开发Cris9 小时前
构建异步任务队列:高效批量化获取淘宝关键词搜索结果的实践
前端·数据挖掘·api
沃达德软件12 小时前
警务大数据挖掘技术
大数据·人工智能·数据挖掘
葉夏夏13 小时前
数据分析实战-零售数据分析
数据挖掘·数据分析·零售·powerbi
IT·小灰灰15 小时前
腾讯HY2.0 Think推理模型深度解析:技术突破、应用场景与实践指南
开发语言·人工智能·python·深度学习·神经网络·算法·数据分析
小王毕业啦16 小时前
2008-2023年 全国统一大市场发展水平
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
李慕婉学姐17 小时前
【开题答辩过程】以《基于Hadoop的医生相关数据分析与可视化及医生推荐系统》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
大数据·hadoop·数据分析
IT·小灰灰19 小时前
DeepSeek-V3.2:开源大模型的里程碑式突破与硅基流动平台实战指南
大数据·人工智能·python·深度学习·算法·数据挖掘·开源
一个散步者的梦1 天前
一键生成数据分析报告:Python的ydata-profiling模块(汉化)
python·数据挖掘·数据分析
语落心生1 天前
餐饮供应链的数仓设计思考 (七) 数据产品与应用创新方案
数据分析