数据分析 | 热度编码和标签编码

热度编码 (One-Hot Encoding)和标签编码 (Label Encoding)是两种常用的将分类变量转换为数值型变量的方法。下面是对这两种编码

方式的详细解释及Python代码示例。

1. 热度编码(One-Hot Encoding)

定义

热度编码将每个类别转换为一个新的二进制变量(0或1)。每个类别都有一个独立的列,表示该样本是否属于该类别。

优点

  • 不会引入顺序关系,适合无序类别(如颜色、性别等)。
  • 保持了每个类别的独立性。

缺点

  • 对于类别数量较多的变量,可能会导致维度爆炸(即生成大量的虚拟变量)。

Python示例

python 复制代码
import pandas as pd

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 使用独热编码
one_hot_encoded_data = pd.get_dummies(data, columns=['color'], drop_first=True)

print(one_hot_encoded_data)

输出

复制代码
   color_blue  color_green
0           0            0
1           1            0
2           0            1
3           1            0
4           0            0

解释

  • pd.get_dummies(...)函数将color列中的每种颜色转换为新的二进制列(color_bluecolor_green)。
  • drop_first=True参数删除了第一个类别(red),从而避免了多重共线性。

2. 标签编码(Label Encoding)

定义

标签编码将每个类别转换为一个唯一的整数值。这种方法对每个类别分配一个数字,通常从0开始。

优点

  • 简单且节省内存。
  • 在某些模型(如树模型)中,能够处理有序类别。

缺点

  • 对于无序类别,可能会引入不必要的顺序关系,使得模型误解类别之间的关系。

Python示例

python 复制代码
from sklearn.preprocessing import LabelEncoder

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 创建LabelEncoder实例
label_encoder = LabelEncoder()

# 使用标签编码
data['color_encoded'] = label_encoder.fit_transform(data['color'])

print(data)

输出

复制代码
   color  color_encoded
0    red              2
1   blue              0
2  green              1
3   blue              0
4    red              2

解释

  • LabelEncodercolor列中的每种颜色转换为唯一的整数值。 red被编码为2,blue为0,green为1。
  • 这种方法在处理有序类别时可能有意义,但在处理无序类别时需要谨慎。

总结

  • 热度编码(One-Hot Encoding)

    • 将每个类别转换为独立的二进制列,适合无序类别。
    • 可能导致维度爆炸。
  • 标签编码(Label Encoding)

    • 将每个类别转换为唯一的整数,适合有序类别。
    • 可能引入不必要的顺序关系,适合某些模型(如树模型)使用。

选择合适的编码方式取决于数据的特性和后续模型的需求。在无序类别的情况下,热度编码通常是更好的选择,而标签编码适用于有序

类别。

相关推荐
薄荷很无奈3 小时前
CuML + Cudf (RAPIDS) 加速python数据分析脚本
python·机器学习·数据分析·gpu算力
qq_436962184 小时前
AI数据分析的利器:解锁BI工具的无限潜力
人工智能·数据挖掘·数据分析·ai数据分析
lilye665 小时前
精益数据分析(24/126):聚焦第一关键指标,驱动创业成功
数据挖掘·数据分析
lilye6614 小时前
精益数据分析(20/126):解析经典数据分析框架,助力创业增长
大数据·人工智能·数据分析
橘猫云计算机设计15 小时前
springboot基于hadoop的酷狗音乐爬虫大数据分析可视化系统(源码+lw+部署文档+讲解),源码可白嫖!
数据库·hadoop·spring boot·爬虫·python·数据分析·毕业设计
云天徽上18 小时前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
用户1997010801820 小时前
深入解析淘宝商品详情 API 接口:功能、使用与实践指南
大数据·爬虫·数据挖掘
databook20 小时前
『Plotly实战指南』--样式定制高级篇
python·数据分析·数据可视化
云天徽上20 小时前
【数据可视化-27】全球网络安全威胁数据可视化分析(2015-2024)
人工智能·安全·web安全·机器学习·信息可视化·数据分析
dundunmm1 天前
【每天一个知识点】如何解决大模型幻觉(hallucination)问题?
人工智能·数据挖掘·大模型