数据分析 | 热度编码和标签编码

热度编码 (One-Hot Encoding)和标签编码 (Label Encoding)是两种常用的将分类变量转换为数值型变量的方法。下面是对这两种编码

方式的详细解释及Python代码示例。

1. 热度编码(One-Hot Encoding)

定义

热度编码将每个类别转换为一个新的二进制变量(0或1)。每个类别都有一个独立的列,表示该样本是否属于该类别。

优点

  • 不会引入顺序关系,适合无序类别(如颜色、性别等)。
  • 保持了每个类别的独立性。

缺点

  • 对于类别数量较多的变量,可能会导致维度爆炸(即生成大量的虚拟变量)。

Python示例

python 复制代码
import pandas as pd

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 使用独热编码
one_hot_encoded_data = pd.get_dummies(data, columns=['color'], drop_first=True)

print(one_hot_encoded_data)

输出

   color_blue  color_green
0           0            0
1           1            0
2           0            1
3           1            0
4           0            0

解释

  • pd.get_dummies(...)函数将color列中的每种颜色转换为新的二进制列(color_bluecolor_green)。
  • drop_first=True参数删除了第一个类别(red),从而避免了多重共线性。

2. 标签编码(Label Encoding)

定义

标签编码将每个类别转换为一个唯一的整数值。这种方法对每个类别分配一个数字,通常从0开始。

优点

  • 简单且节省内存。
  • 在某些模型(如树模型)中,能够处理有序类别。

缺点

  • 对于无序类别,可能会引入不必要的顺序关系,使得模型误解类别之间的关系。

Python示例

python 复制代码
from sklearn.preprocessing import LabelEncoder

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 创建LabelEncoder实例
label_encoder = LabelEncoder()

# 使用标签编码
data['color_encoded'] = label_encoder.fit_transform(data['color'])

print(data)

输出

   color  color_encoded
0    red              2
1   blue              0
2  green              1
3   blue              0
4    red              2

解释

  • LabelEncodercolor列中的每种颜色转换为唯一的整数值。 red被编码为2,blue为0,green为1。
  • 这种方法在处理有序类别时可能有意义,但在处理无序类别时需要谨慎。

总结

  • 热度编码(One-Hot Encoding)

    • 将每个类别转换为独立的二进制列,适合无序类别。
    • 可能导致维度爆炸。
  • 标签编码(Label Encoding)

    • 将每个类别转换为唯一的整数,适合有序类别。
    • 可能引入不必要的顺序关系,适合某些模型(如树模型)使用。

选择合适的编码方式取决于数据的特性和后续模型的需求。在无序类别的情况下,热度编码通常是更好的选择,而标签编码适用于有序

类别。

相关推荐
Leo.yuan7 小时前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
海边散步的蜗牛12 小时前
学术论文写作丨机器学习与深度学习
人工智能·深度学习·机器学习·chatgpt·数据分析·ai写作
数模竞赛Paid answer14 小时前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup
爱睡觉的咋14 小时前
GNN入门案例——KarateClub结点分类
人工智能·分类·数据挖掘·图神经网络
康谋自动驾驶15 小时前
康谋分享 | 确保AD/ADAS系统的安全:避免数据泛滥的关键
数据分析·自动驾驶·汽车
封步宇AIGC19 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742119 小时前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
封步宇AIGC21 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.6.A股宏观经济数据
人工智能·python·机器学习·数据挖掘
幸运小新21 小时前
数据分析-Excel基础操作
数据分析
Moonquake_www1 天前
数据集划分
算法·数据分析