数据分析 | 热度编码和标签编码

热度编码 (One-Hot Encoding)和标签编码 (Label Encoding)是两种常用的将分类变量转换为数值型变量的方法。下面是对这两种编码

方式的详细解释及Python代码示例。

1. 热度编码(One-Hot Encoding)

定义

热度编码将每个类别转换为一个新的二进制变量(0或1)。每个类别都有一个独立的列,表示该样本是否属于该类别。

优点

  • 不会引入顺序关系,适合无序类别(如颜色、性别等)。
  • 保持了每个类别的独立性。

缺点

  • 对于类别数量较多的变量,可能会导致维度爆炸(即生成大量的虚拟变量)。

Python示例

python 复制代码
import pandas as pd

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 使用独热编码
one_hot_encoded_data = pd.get_dummies(data, columns=['color'], drop_first=True)

print(one_hot_encoded_data)

输出

复制代码
   color_blue  color_green
0           0            0
1           1            0
2           0            1
3           1            0
4           0            0

解释

  • pd.get_dummies(...)函数将color列中的每种颜色转换为新的二进制列(color_bluecolor_green)。
  • drop_first=True参数删除了第一个类别(red),从而避免了多重共线性。

2. 标签编码(Label Encoding)

定义

标签编码将每个类别转换为一个唯一的整数值。这种方法对每个类别分配一个数字,通常从0开始。

优点

  • 简单且节省内存。
  • 在某些模型(如树模型)中,能够处理有序类别。

缺点

  • 对于无序类别,可能会引入不必要的顺序关系,使得模型误解类别之间的关系。

Python示例

python 复制代码
from sklearn.preprocessing import LabelEncoder

# 创建示例数据集
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue', 'red']
})

# 创建LabelEncoder实例
label_encoder = LabelEncoder()

# 使用标签编码
data['color_encoded'] = label_encoder.fit_transform(data['color'])

print(data)

输出

复制代码
   color  color_encoded
0    red              2
1   blue              0
2  green              1
3   blue              0
4    red              2

解释

  • LabelEncodercolor列中的每种颜色转换为唯一的整数值。 red被编码为2,blue为0,green为1。
  • 这种方法在处理有序类别时可能有意义,但在处理无序类别时需要谨慎。

总结

  • 热度编码(One-Hot Encoding)

    • 将每个类别转换为独立的二进制列,适合无序类别。
    • 可能导致维度爆炸。
  • 标签编码(Label Encoding)

    • 将每个类别转换为唯一的整数,适合有序类别。
    • 可能引入不必要的顺序关系,适合某些模型(如树模型)使用。

选择合适的编码方式取决于数据的特性和后续模型的需求。在无序类别的情况下,热度编码通常是更好的选择,而标签编码适用于有序

类别。

相关推荐
千鼎数字孪生-可视化1 小时前
3D模型给可视化大屏带来了哪些创新,都涉及到哪些技术栈。
ui·3d·信息可视化·数据分析
Python之栈2 小时前
PandasAI:当数据分析遇上自然语言处理
人工智能·python·数据分析·pandas
Start_Present11 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
DREAM.ZL12 小时前
基于python的电影数据分析及可视化系统
开发语言·python·数据分析
代码骑士14 小时前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
大美B端工场-B端系统美颜师14 小时前
静态图表 VS 动态可视化,哪种更适合数据故事讲述?
信息可视化·数据挖掘·数据分析
青云交18 小时前
Java 大视界 -- Java 大数据在智能电网电力市场交易数据分析与策略制定中的关键作用(162)
java·大数据·数据分析·交易策略·智能电网·java 大数据·电力市场交易
葡萄成熟时_20 小时前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
mosquito_lover11 天前
Python数据分析与可视化实战
python·数据挖掘·数据分析
QQ__17646198241 天前
Labview信号采集与分析系统(可仿真)
数据分析·数据采集·labview