【pytorch】张量求导

笔者看到了这篇文章,可以很好的解释张量的求导问题:

看到了上面这张图,可以说很好的表示了前向和反向的过程了。

补充几个细节

之前看李沐的d2l,一直不懂为什么矩阵计算时的一些奇奇怪怪的规定,比如为什么一个行向量对另一个行向量作微分的结果是每一行都对第二个向量的每个元素都进行偏微分,然后拼成一个矩阵。按照作者提到的,首先将y中的每个元素都对向量进行微分,然后再拼成一个矩阵。

另外一个就是:为什么两个向量微分之后的形状是两个向量的形状直接拼起来,从文中作者的解释也可以看出,每个元素都对第二个向量作微分,形状和第二个向量相同,而每个结果都会作为第一个向量的元素,因为最后一维往往就是元素,所以效果就相当于两个向量拼起来。

作者没更矩阵部分的内容,好可惜哦。

相关推荐
Robot2513 分钟前
浅谈,华为切入具身智能赛道
人工智能
只怕自己不够好8 分钟前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv
好看资源平台1 小时前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
果冻人工智能1 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工1 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
进击的六角龙1 小时前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂1 小时前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
石小石Orz1 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
湫ccc1 小时前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai