【pytorch】张量求导

笔者看到了这篇文章,可以很好的解释张量的求导问题:

看到了上面这张图,可以说很好的表示了前向和反向的过程了。

补充几个细节

之前看李沐的d2l,一直不懂为什么矩阵计算时的一些奇奇怪怪的规定,比如为什么一个行向量对另一个行向量作微分的结果是每一行都对第二个向量的每个元素都进行偏微分,然后拼成一个矩阵。按照作者提到的,首先将y中的每个元素都对向量进行微分,然后再拼成一个矩阵。

另外一个就是:为什么两个向量微分之后的形状是两个向量的形状直接拼起来,从文中作者的解释也可以看出,每个元素都对第二个向量作微分,形状和第二个向量相同,而每个结果都会作为第一个向量的元素,因为最后一维往往就是元素,所以效果就相当于两个向量拼起来。

作者没更矩阵部分的内容,好可惜哦。

相关推荐
范桂飓4 分钟前
Claude Code 高级特性和应用实践
人工智能
Liue612312316 分钟前
铁路轨道扣件缺陷检测与识别:基于YOLO11-C3k2-Strip模型的改进实现
python
格林威9 分钟前
Baumer相机橡胶O型圈直径测量:用于密封件入库检验的 6 个关键技术,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·智能相机·堡盟相机
格林威11 分钟前
Baumer相机印刷标签二维码可读性评估:优化打码工艺的 7 个实用技巧,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·智能相机·堡盟相机
Fairy要carry13 分钟前
面试-SFT
人工智能
skywalk816315 分钟前
ete3 和 ete4 是用于系统发育树(Phylogenetic Tree)分析、可视化及操作的Python科学计算库
开发语言·python
Alice_whj27 分钟前
AI云原生笔记
人工智能·笔记·云原生
Lyan-X30 分钟前
鲁鹏教授《计算机视觉与深度学习》课程笔记与思考 ——13. 生成模型 VAE:从无监督学习到显式密度估计的建模与实现
人工智能·笔记·深度学习·计算机视觉
AI_Auto30 分钟前
智能制造-MES与AI结合的核心价值与逻辑
大数据·人工智能·制造
追风少年ii32 分钟前
多组学顶刊--肿瘤源性氨可被调节性T细胞代谢利用,进而强化对机体抗肿瘤免疫反应的抑制效应
python·分类·数据分析·空间·单细胞