机器学习笔记-2

文章目录

  • [一、Linear model](#一、Linear model)
  • [二、How to represent this function](#二、How to represent this function)
  • [三、Function with unknown parameter](#三、Function with unknown parameter)
  • 四、ReLU
  • [总结、A fancy name](#总结、A fancy name)

一、Linear model

线性模型过于简单,有很大限制,我们需要更多复杂模式

蓝色是线性模型,线性模型无法去表示红色的那个线

所以线性模型有严重的局限性这被成为

Model Bias(模型偏差)

我们需要一个复杂的有位置参数的function

所有分段线性曲线=常数+多个分段线性函数的叠加

二、How to represent this function

用这个Sigmoid function来逼近这条蓝色的Hard Sigmoid function

例:

分别改变w,b,c

假设要写出红色的这条线

从简单模型到复杂模型

初始线性回归模型

引入非线性(sigmoid 函数):将模型扩展为使用 sigmoid 激活函数引入更多权重和偏移

多特征线性模型:在此基础上,模型扩展为多输入特征

多特征与非线性结合:非线性函数 sigmoid 被应用在多个输入特征的线性组合上

通过多个输入特征和权重计算激活函数

简化成矩阵

将线性加权求和的结果通过非线性激活函数进行转换。

最后输出计算

最后用线性代数得到式子

三、Function with unknown parameter

将神经网络中的所有权重和偏置统一为一个参数向量 𝜃,便于进行优化

ML框架

定Loss

新模型优化

通过梯度下降法优化模型参数 𝜃 来最小化损失函数L。

找到最优的𝜃使L值最小

四、ReLU

也可以用ReLU,将Sigmoid的地方换成ReLU

例:



总结、A fancy name

我们给这些起了一个好听的名字

Neuron

Neuron Network

Deep Learning

发展变化

相关推荐
kisshuan123962 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits2 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅2 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448373 小时前
机器学习基本概念与梯度下降
人工智能
水如烟4 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿4 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——4 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程5 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator5 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能