机器学习笔记-2

文章目录

  • [一、Linear model](#一、Linear model)
  • [二、How to represent this function](#二、How to represent this function)
  • [三、Function with unknown parameter](#三、Function with unknown parameter)
  • 四、ReLU
  • [总结、A fancy name](#总结、A fancy name)

一、Linear model

线性模型过于简单,有很大限制,我们需要更多复杂模式

蓝色是线性模型,线性模型无法去表示红色的那个线

所以线性模型有严重的局限性这被成为

Model Bias(模型偏差)

我们需要一个复杂的有位置参数的function

所有分段线性曲线=常数+多个分段线性函数的叠加

二、How to represent this function

用这个Sigmoid function来逼近这条蓝色的Hard Sigmoid function

例:

分别改变w,b,c

假设要写出红色的这条线

从简单模型到复杂模型

初始线性回归模型

引入非线性(sigmoid 函数):将模型扩展为使用 sigmoid 激活函数引入更多权重和偏移

多特征线性模型:在此基础上,模型扩展为多输入特征

多特征与非线性结合:非线性函数 sigmoid 被应用在多个输入特征的线性组合上

通过多个输入特征和权重计算激活函数

简化成矩阵

将线性加权求和的结果通过非线性激活函数进行转换。

最后输出计算

最后用线性代数得到式子

三、Function with unknown parameter

将神经网络中的所有权重和偏置统一为一个参数向量 𝜃,便于进行优化

ML框架

定Loss

新模型优化

通过梯度下降法优化模型参数 𝜃 来最小化损失函数L。

找到最优的𝜃使L值最小

四、ReLU

也可以用ReLU,将Sigmoid的地方换成ReLU

例:



总结、A fancy name

我们给这些起了一个好听的名字

Neuron

Neuron Network

Deep Learning

发展变化

相关推荐
人工智能AI技术24 分钟前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡34 分钟前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣36 分钟前
深度学习之对比学习
人工智能·深度学习·学习
AI_567838 分钟前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6001 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书1731 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416271 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented1 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie2 小时前
ADALog 日志异常检测
人工智能
Jouham2 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能