机器学习笔记-2

文章目录

  • [一、Linear model](#一、Linear model)
  • [二、How to represent this function](#二、How to represent this function)
  • [三、Function with unknown parameter](#三、Function with unknown parameter)
  • 四、ReLU
  • [总结、A fancy name](#总结、A fancy name)

一、Linear model

线性模型过于简单,有很大限制,我们需要更多复杂模式

蓝色是线性模型,线性模型无法去表示红色的那个线

所以线性模型有严重的局限性这被成为

Model Bias(模型偏差)

我们需要一个复杂的有位置参数的function

所有分段线性曲线=常数+多个分段线性函数的叠加

二、How to represent this function

用这个Sigmoid function来逼近这条蓝色的Hard Sigmoid function

例:

分别改变w,b,c

假设要写出红色的这条线

从简单模型到复杂模型

初始线性回归模型

引入非线性(sigmoid 函数):将模型扩展为使用 sigmoid 激活函数引入更多权重和偏移

多特征线性模型:在此基础上,模型扩展为多输入特征

多特征与非线性结合:非线性函数 sigmoid 被应用在多个输入特征的线性组合上

通过多个输入特征和权重计算激活函数

简化成矩阵

将线性加权求和的结果通过非线性激活函数进行转换。

最后输出计算

最后用线性代数得到式子

三、Function with unknown parameter

将神经网络中的所有权重和偏置统一为一个参数向量 𝜃,便于进行优化

ML框架

定Loss

新模型优化

通过梯度下降法优化模型参数 𝜃 来最小化损失函数L。

找到最优的𝜃使L值最小

四、ReLU

也可以用ReLU,将Sigmoid的地方换成ReLU

例:



总结、A fancy name

我们给这些起了一个好听的名字

Neuron

Neuron Network

Deep Learning

发展变化

相关推荐
档案宝档案管理2 分钟前
从台账到检索,全面提升档案管理的便捷性和安全性
大数据·人工智能·档案·档案管理
Elastic 中国社区官方博客3 分钟前
使用 Elasticsearch 和 LLMs 进行实体解析,第 1 部分:为智能实体匹配做准备
大数据·人工智能·elasticsearch·搜索引擎·全文检索
宁远x5 分钟前
【万字长文】PyTorch FSDP 设计解读与性能分析
人工智能·pytorch·深度学习·云计算
何伯特5 分钟前
PyTorch基本用法介绍:从零开始构建深度学习工作流
人工智能·pytorch·深度学习
赛博鲁迅5 分钟前
dify添加中转站模型教程
人工智能·gpt·aigc·ai编程·dify·ai-native
李派森9 分钟前
AI大模型之丙午马年运势模型的构建与求解
笔记·算法
dalong1010 分钟前
A25:捕获鼠标与按键事件
笔记·aardio
还在忙碌的吴小二12 分钟前
飞牛NAS ARM版升级全指南+性能深度解析|低成本盘活闲置设备,功耗与体验双突破
arm开发·人工智能
what丶k12 分钟前
AI 中的向量详解:从原理到实战
人工智能
hans汉斯15 分钟前
基于联邦学习的隐私保护和抗投毒攻击方法研究
网络·人工智能·算法·yolo·数据挖掘·聚类·汉斯出版社