LSTM(长短时记忆网络)

一、引言

在处理序列数据时,循环神经网络(RNN)虽然能够处理序列数据并保留历史信息,但在实践中发现它对于捕捉长时间依赖关系的能力有限,尤其是在训练过程中容易遇到梯度消失或梯度爆炸的问题。为了解决这些问题,Hochreiter和Schmidhuber于1997年提出了长短时记忆网络(Long Short-Term Memory, LSTM)。

二、LSTM的基本概念

LSTM是一种特殊的RNN类型,专门设计用于避免长期依赖问题。它通过引入一种称为"细胞状态"(cell state)的记忆单元来保存信息,并通过控制门机制(control gates)来决定何时保存、删除或更新这些信息。

三、LSTM的关键组件
1. 细胞状态(Cell State)

细胞状态是一个信息通道,沿着整个链路传递,只会在特定情况下被添加或移除信息。这样,它可以有效地保存长期依赖的信息。

2. 控制门(Control Gates)

LSTM中有三种类型的门:

  • 遗忘门(Forget Gate):决定丢弃哪些信息。
  • 输入门(Input Gate):决定哪些新信息要存储在细胞状态中。
  • 输出门(Output Gate):决定基于细胞状态输出哪些信息给下一个时刻。

这些门由Sigmoid激活函数控制,输出值介于0和1之间,表示让信息完全通过(1)或者完全阻断(0)。

四、LSTM的工作流程

以下是LSTM在每一个时间步tt的计算过程:

  1. 遗忘门

    • 这里σσ代表Sigmoid函数,WfWf是权重矩阵,bfbf是偏置向量。遗忘门的输出ftft决定了我们从细胞状态Ct−1Ct−1中要丢弃多少信息。
  2. 输入处理

    • 输入门控制部分
    • 候选细胞状态
    • 输入门的输出itit决定了我们从候选细胞状态C~tC~t中要保存多少信息。
  3. 更新细胞状态

    • 这里∘∘表示按元素相乘(Hadamar乘积)。
  4. 输出门

    • 输出门控制部分
    • 隐藏状态
    • 输出门决定了我们根据细胞状态CtCt输出多少信息。
五、LSTM的优点
  • 解决梯度消失/爆炸问题:通过门控机制,LSTM可以有效避免梯度消失或梯度爆炸。
  • 捕捉长期依赖:LSTM能够捕获更长距离的依赖关系。
  • 灵活性:LSTM可以很容易地扩展到其他架构中,如双向LSTM、堆叠LSTM等。
六、总结

LSTM是RNN的一种扩展形式,专门针对长期依赖问题进行了优化。通过引入细胞状态和门控机制,LSTM能够更好地管理信息流,从而在序列建模任务中表现得更加出色。无论是文本生成、机器翻译还是语音识别,LSTM都展现出了强大的潜力

相关推荐
天水幼麟26 分钟前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟3 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
强哥之神6 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
陈敬雷-充电了么-CEO兼CTO7 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
旷世奇才李先生8 小时前
Pillow 安装使用教程
深度学习·microsoft·pillow
acstdm11 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl12 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~12 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
视觉语言导航14 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
羊小猪~~15 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘