LSTM(长短时记忆网络)

一、引言

在处理序列数据时,循环神经网络(RNN)虽然能够处理序列数据并保留历史信息,但在实践中发现它对于捕捉长时间依赖关系的能力有限,尤其是在训练过程中容易遇到梯度消失或梯度爆炸的问题。为了解决这些问题,Hochreiter和Schmidhuber于1997年提出了长短时记忆网络(Long Short-Term Memory, LSTM)。

二、LSTM的基本概念

LSTM是一种特殊的RNN类型,专门设计用于避免长期依赖问题。它通过引入一种称为"细胞状态"(cell state)的记忆单元来保存信息,并通过控制门机制(control gates)来决定何时保存、删除或更新这些信息。

三、LSTM的关键组件
1. 细胞状态(Cell State)

细胞状态是一个信息通道,沿着整个链路传递,只会在特定情况下被添加或移除信息。这样,它可以有效地保存长期依赖的信息。

2. 控制门(Control Gates)

LSTM中有三种类型的门:

  • 遗忘门(Forget Gate):决定丢弃哪些信息。
  • 输入门(Input Gate):决定哪些新信息要存储在细胞状态中。
  • 输出门(Output Gate):决定基于细胞状态输出哪些信息给下一个时刻。

这些门由Sigmoid激活函数控制,输出值介于0和1之间,表示让信息完全通过(1)或者完全阻断(0)。

四、LSTM的工作流程

以下是LSTM在每一个时间步tt的计算过程:

  1. 遗忘门

    • 这里σσ代表Sigmoid函数,WfWf是权重矩阵,bfbf是偏置向量。遗忘门的输出ftft决定了我们从细胞状态Ct−1Ct−1中要丢弃多少信息。
  2. 输入处理

    • 输入门控制部分
    • 候选细胞状态
    • 输入门的输出itit决定了我们从候选细胞状态C~tC~t中要保存多少信息。
  3. 更新细胞状态

    • 这里∘∘表示按元素相乘(Hadamar乘积)。
  4. 输出门

    • 输出门控制部分
    • 隐藏状态
    • 输出门决定了我们根据细胞状态CtCt输出多少信息。
五、LSTM的优点
  • 解决梯度消失/爆炸问题:通过门控机制,LSTM可以有效避免梯度消失或梯度爆炸。
  • 捕捉长期依赖:LSTM能够捕获更长距离的依赖关系。
  • 灵活性:LSTM可以很容易地扩展到其他架构中,如双向LSTM、堆叠LSTM等。
六、总结

LSTM是RNN的一种扩展形式,专门针对长期依赖问题进行了优化。通过引入细胞状态和门控机制,LSTM能够更好地管理信息流,从而在序列建模任务中表现得更加出色。无论是文本生成、机器翻译还是语音识别,LSTM都展现出了强大的潜力

相关推荐
无风听海39 分钟前
理解梯度在神经网络中的应用
人工智能·深度学习·神经网络·梯度
仪器科学与传感技术博士44 分钟前
python:前馈人工神经网络算法之实战篇,以示例带学,弄明白神经网络算法应用的思路、方法与注意事项等
人工智能·python·深度学习·神经网络·算法·机器学习
不会学习的小白O^O11 小时前
神经网络----卷积层(Conv2D)
人工智能·深度学习·神经网络
cosX+sinY12 小时前
10 卷积神经网络
python·深度学习·cnn
CodeShare13 小时前
多模态统一框架:基于下一帧预测的视频化方法
深度学习·计算机视觉·多模态学习
时序之心15 小时前
ICML 2025 | 深度剖析时序 Transformer:为何有效,瓶颈何在?
人工智能·深度学习·transformer
图灵学术计算机论文辅导16 小时前
提示+掩膜+注意力=Mamba三连击,跨模态任务全面超越
论文阅读·人工智能·经验分享·科技·深度学习·考研·计算机视觉
计算机科研圈17 小时前
不靠海量数据,精准喂养大模型!上交Data Whisperer:免训练数据选择法,10%数据逼近全量效果
人工智能·深度学习·机器学习·llm·ai编程
大千AI助手17 小时前
FEVER数据集:事实验证任务的大规模基准与评估框架
人工智能·深度学习·数据集·fever·事实验证·事实抽取·虚假信息
格林威18 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现道路汽车的检测识别(C#代码,UI界面版)
人工智能·深度学习·数码相机·yolo·视觉检测