LSTM(长短时记忆网络)

一、引言

在处理序列数据时,循环神经网络(RNN)虽然能够处理序列数据并保留历史信息,但在实践中发现它对于捕捉长时间依赖关系的能力有限,尤其是在训练过程中容易遇到梯度消失或梯度爆炸的问题。为了解决这些问题,Hochreiter和Schmidhuber于1997年提出了长短时记忆网络(Long Short-Term Memory, LSTM)。

二、LSTM的基本概念

LSTM是一种特殊的RNN类型,专门设计用于避免长期依赖问题。它通过引入一种称为"细胞状态"(cell state)的记忆单元来保存信息,并通过控制门机制(control gates)来决定何时保存、删除或更新这些信息。

三、LSTM的关键组件
1. 细胞状态(Cell State)

细胞状态是一个信息通道,沿着整个链路传递,只会在特定情况下被添加或移除信息。这样,它可以有效地保存长期依赖的信息。

2. 控制门(Control Gates)

LSTM中有三种类型的门:

  • 遗忘门(Forget Gate):决定丢弃哪些信息。
  • 输入门(Input Gate):决定哪些新信息要存储在细胞状态中。
  • 输出门(Output Gate):决定基于细胞状态输出哪些信息给下一个时刻。

这些门由Sigmoid激活函数控制,输出值介于0和1之间,表示让信息完全通过(1)或者完全阻断(0)。

四、LSTM的工作流程

以下是LSTM在每一个时间步tt的计算过程:

  1. 遗忘门

    • 这里σσ代表Sigmoid函数,WfWf是权重矩阵,bfbf是偏置向量。遗忘门的输出ftft决定了我们从细胞状态Ct−1Ct−1中要丢弃多少信息。
  2. 输入处理

    • 输入门控制部分
    • 候选细胞状态
    • 输入门的输出itit决定了我们从候选细胞状态C~tC~t中要保存多少信息。
  3. 更新细胞状态

    • 这里∘∘表示按元素相乘(Hadamar乘积)。
  4. 输出门

    • 输出门控制部分
    • 隐藏状态
    • 输出门决定了我们根据细胞状态CtCt输出多少信息。
五、LSTM的优点
  • 解决梯度消失/爆炸问题:通过门控机制,LSTM可以有效避免梯度消失或梯度爆炸。
  • 捕捉长期依赖:LSTM能够捕获更长距离的依赖关系。
  • 灵活性:LSTM可以很容易地扩展到其他架构中,如双向LSTM、堆叠LSTM等。
六、总结

LSTM是RNN的一种扩展形式,专门针对长期依赖问题进行了优化。通过引入细胞状态和门控机制,LSTM能够更好地管理信息流,从而在序列建模任务中表现得更加出色。无论是文本生成、机器翻译还是语音识别,LSTM都展现出了强大的潜力

相关推荐
隐语SecretFlow2 小时前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
木头左3 小时前
基于LSTM与3秒级Tick数据的金融时间序列预测实现
人工智能·金融·lstm
Billy_Zuo3 小时前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈3 小时前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy3 小时前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu10 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡13 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有15 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社15 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
七元权17 小时前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计