LSTM(长短时记忆网络)

一、引言

在处理序列数据时,循环神经网络(RNN)虽然能够处理序列数据并保留历史信息,但在实践中发现它对于捕捉长时间依赖关系的能力有限,尤其是在训练过程中容易遇到梯度消失或梯度爆炸的问题。为了解决这些问题,Hochreiter和Schmidhuber于1997年提出了长短时记忆网络(Long Short-Term Memory, LSTM)。

二、LSTM的基本概念

LSTM是一种特殊的RNN类型,专门设计用于避免长期依赖问题。它通过引入一种称为"细胞状态"(cell state)的记忆单元来保存信息,并通过控制门机制(control gates)来决定何时保存、删除或更新这些信息。

三、LSTM的关键组件
1. 细胞状态(Cell State)

细胞状态是一个信息通道,沿着整个链路传递,只会在特定情况下被添加或移除信息。这样,它可以有效地保存长期依赖的信息。

2. 控制门(Control Gates)

LSTM中有三种类型的门:

  • 遗忘门(Forget Gate):决定丢弃哪些信息。
  • 输入门(Input Gate):决定哪些新信息要存储在细胞状态中。
  • 输出门(Output Gate):决定基于细胞状态输出哪些信息给下一个时刻。

这些门由Sigmoid激活函数控制,输出值介于0和1之间,表示让信息完全通过(1)或者完全阻断(0)。

四、LSTM的工作流程

以下是LSTM在每一个时间步tt的计算过程:

  1. 遗忘门

    • 这里σσ代表Sigmoid函数,WfWf是权重矩阵,bfbf是偏置向量。遗忘门的输出ftft决定了我们从细胞状态Ct−1Ct−1中要丢弃多少信息。
  2. 输入处理

    • 输入门控制部分
    • 候选细胞状态
    • 输入门的输出itit决定了我们从候选细胞状态C~tC~t中要保存多少信息。
  3. 更新细胞状态

    • 这里∘∘表示按元素相乘(Hadamar乘积)。
  4. 输出门

    • 输出门控制部分
    • 隐藏状态
    • 输出门决定了我们根据细胞状态CtCt输出多少信息。
五、LSTM的优点
  • 解决梯度消失/爆炸问题:通过门控机制,LSTM可以有效避免梯度消失或梯度爆炸。
  • 捕捉长期依赖:LSTM能够捕获更长距离的依赖关系。
  • 灵活性:LSTM可以很容易地扩展到其他架构中,如双向LSTM、堆叠LSTM等。
六、总结

LSTM是RNN的一种扩展形式,专门针对长期依赖问题进行了优化。通过引入细胞状态和门控机制,LSTM能够更好地管理信息流,从而在序列建模任务中表现得更加出色。无论是文本生成、机器翻译还是语音识别,LSTM都展现出了强大的潜力

相关推荐
天云数据13 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
独自归家的兔13 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
deephub15 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_199115 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann
龙腾AI白云15 小时前
大模型架构演进:从Transformer到MoE
深度学习·知识图谱
宁远x15 小时前
Flash Attention原理介绍与使用方法
人工智能·深度学习·机器学习
琅琊榜首202016 小时前
AI+编程思维:高质量短剧脚本高效撰写实操指南
大数据·人工智能·深度学习
十铭忘19 小时前
个人思考3——世界动作模型
人工智能·深度学习·计算机视觉
kkkkkkkkk_120119 小时前
【强化学习】09周博磊强化学习纲要学习笔记——第五课上
笔记·深度学习·学习·强化学习
相思半20 小时前
告别聊天机器人!2026 智能体元年:Claude 4.6 vs GPT-5.3 vs OpenClaw 全方位对比
人工智能·gpt·深度学习·claude·codex·智能体·seedance