LSTM(长短时记忆网络)

一、引言

在处理序列数据时,循环神经网络(RNN)虽然能够处理序列数据并保留历史信息,但在实践中发现它对于捕捉长时间依赖关系的能力有限,尤其是在训练过程中容易遇到梯度消失或梯度爆炸的问题。为了解决这些问题,Hochreiter和Schmidhuber于1997年提出了长短时记忆网络(Long Short-Term Memory, LSTM)。

二、LSTM的基本概念

LSTM是一种特殊的RNN类型,专门设计用于避免长期依赖问题。它通过引入一种称为"细胞状态"(cell state)的记忆单元来保存信息,并通过控制门机制(control gates)来决定何时保存、删除或更新这些信息。

三、LSTM的关键组件
1. 细胞状态(Cell State)

细胞状态是一个信息通道,沿着整个链路传递,只会在特定情况下被添加或移除信息。这样,它可以有效地保存长期依赖的信息。

2. 控制门(Control Gates)

LSTM中有三种类型的门:

  • 遗忘门(Forget Gate):决定丢弃哪些信息。
  • 输入门(Input Gate):决定哪些新信息要存储在细胞状态中。
  • 输出门(Output Gate):决定基于细胞状态输出哪些信息给下一个时刻。

这些门由Sigmoid激活函数控制,输出值介于0和1之间,表示让信息完全通过(1)或者完全阻断(0)。

四、LSTM的工作流程

以下是LSTM在每一个时间步tt的计算过程:

  1. 遗忘门

    • 这里σσ代表Sigmoid函数,WfWf是权重矩阵,bfbf是偏置向量。遗忘门的输出ftft决定了我们从细胞状态Ct−1Ct−1中要丢弃多少信息。
  2. 输入处理

    • 输入门控制部分
    • 候选细胞状态
    • 输入门的输出itit决定了我们从候选细胞状态C~tC~t中要保存多少信息。
  3. 更新细胞状态

    • 这里∘∘表示按元素相乘(Hadamar乘积)。
  4. 输出门

    • 输出门控制部分
    • 隐藏状态
    • 输出门决定了我们根据细胞状态CtCt输出多少信息。
五、LSTM的优点
  • 解决梯度消失/爆炸问题:通过门控机制,LSTM可以有效避免梯度消失或梯度爆炸。
  • 捕捉长期依赖:LSTM能够捕获更长距离的依赖关系。
  • 灵活性:LSTM可以很容易地扩展到其他架构中,如双向LSTM、堆叠LSTM等。
六、总结

LSTM是RNN的一种扩展形式,专门针对长期依赖问题进行了优化。通过引入细胞状态和门控机制,LSTM能够更好地管理信息流,从而在序列建模任务中表现得更加出色。无论是文本生成、机器翻译还是语音识别,LSTM都展现出了强大的潜力

相关推荐
2501_924890523 小时前
商超场景徘徊识别误报率↓79%!陌讯多模态时序融合算法落地优化
java·大数据·人工智能·深度学习·算法·目标检测·计算机视觉
SalvoGao3 小时前
空转学习 | cell-level 与 spot-level的区别
人工智能·深度学习·学习
什么都想学的阿超4 小时前
【大语言模型 15】因果掩码与注意力掩码实现:深度学习中的信息流控制艺术
人工智能·深度学习·语言模型
SHIPKING3935 小时前
【机器学习&深度学习】大模型分布式推理概述:从显存困境到高并发挑战的解决方案
人工智能·深度学习
没有梦想的咸鱼185-1037-166311 小时前
AI大模型支持下的:CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·python·深度学习·机器学习·chatgpt·数据挖掘·数据分析
灵智工坊LingzhiAI12 小时前
基于深度学习的中草药识别系统:从零到部署的完整实践
人工智能·深度学习
SHIPKING3931 天前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
兔子的倔强1 天前
Transformer在文本、图像和点云数据中的应用——经典工作梳理
人工智能·深度学习·transformer
lxmyzzs1 天前
【图像算法 - 21】慧眼识虫:基于深度学习与OpenCV的农田害虫智能识别系统
人工智能·深度学习·opencv·算法·yolo·目标检测·计算机视觉
AI人工智能+1 天前
表格识别技术:通过图像处理与深度学习,将非结构化表格转化为可编辑结构化数据,推动智能化发展
人工智能·深度学习·ocr·表格识别