计算机视觉——图像修复综述篇

目录

[1. Deterministic Image Inpainting 判别器图像修复](#1. Deterministic Image Inpainting 判别器图像修复)

[1.1. sigle-shot framework](#1.1. sigle-shot framework)

[(1) Generators](#(1) Generators)

[(2) training objects / Loss Functions](#(2) training objects / Loss Functions)

[1.2. two-stage framework](#1.2. two-stage framework)

[2. Stochastic Image Inpainting 随机图像修复](#2. Stochastic Image Inpainting 随机图像修复)

[2.1. VAE-based methods](#2.1. VAE-based methods)

[2.2. GAN-based methods](#2.2. GAN-based methods)

[2.3. Flow-based methods](#2.3. Flow-based methods)

[2.4. MLM-based methods](#2.4. MLM-based methods)

[2.5. Diffusion model-based methods](#2.5. Diffusion model-based methods)

[3. text-guided image inpainting ⽂本引导的图像修复](#3. text-guided image inpainting ⽂本引导的图像修复)

[4. Inpainting Mask 掩码机制](#4. Inpainting Mask 掩码机制)

[(1) regular mask](#(1) regular mask)

[(2) irregular mask](#(2) irregular mask)

[5. Loss Function 损失函数](#5. Loss Function 损失函数)

[6. Dataset 图像修复领域数据集](#6. Dataset 图像修复领域数据集)

[(1) faces(CelebA & CelebA-HQ)](#(1) faces(CelebA & CelebA-HQ))

[(2) real-world encountered scenes(Places2)](#(2) real-world encountered scenes(Places2))

[(3) street scenes(Paris)](#(3) street scenes(Paris))

[(4) texture(DTD)](#(4) texture(DTD))

[(5) objects (ImageNet)](#(5) objects (ImageNet))

[7. Evaluation Protocol 评估指标](#7. Evaluation Protocol 评估指标)

[7.1. pixel-aware metrics](#7.1. pixel-aware metrics)

[7.2. (human) perception-aware metriics](#7.2. (human) perception-aware metriics)

[8. Performance Evaluation 表现评估](#8. Performance Evaluation 表现评估)

[8.1 Representative Image Inpainting Methods](#8.1 Representative Image Inpainting Methods)

[8.2 Loss Functions](#8.2 Loss Functions)

[9. Inpainting-based Application 基于图像修复的领域应⽤](#9. Inpainting-based Application 基于图像修复的领域应⽤)

[(1) Object Removal](#(1) Object Removal)

[(2) Text Editing](#(2) Text Editing)

[(3) Old Photo Restoration](#(3) Old Photo Restoration)

[(4) Image Compression](#(4) Image Compression)

[(5) Text-guided image editing](#(5) Text-guided image editing)

Reference


1. Deterministic Image Inpainting 判别器图像修复

1.1. sigle-shot framework
(1) Generators
  1. mask-aware design
  2. attention mechanism
  3. multi-scale aggregation
  4. transform domain
  5. encoder-decoder connection
  6. deep prior guidance
(2) training objects / Loss Functions
  1. Pixel-wise reconstruction loss
  2. perceptual loss
  3. style loss
  4. adversarial loss
  5. prevalent training objectives
1.2. two-stage framework

(1) coarse-to-fiine methods
(2) structure-then-texture methods

2. Stochastic Image Inpainting 随机图像修复

2.1. VAE-based methods
2.2. GAN-based methods
2.3. Flow-based methods
2.4. MLM-based methods
2.5. Diffusion model-based methods

(1) sample stratage design
(2) computational cost reduction

3. text-guided image inpainting ⽂本引导的图像修复

4. Inpainting Mask 掩码机制

(1) regular mask
(2) irregular mask

5. Loss Function 损失函数

同1-1.1-(2) training objects

6. Dataset 图像修复领域数据集

(1) faces(CelebA & CelebA-HQ)
(2) real-world encountered scenes(Places2)
(3) street scenes(Paris)
(4) texture(DTD)
(5) objects (ImageNet)

7. Evaluation Protocol 评估指标

7.1. pixel-aware metrics

focus on the precision of reconstructed pixels
(1) l1 error
(1) l2 error
(3) PSNR(peak signal-to-noise ratio)
(4) SSIM(the structure similarity index)
(5) MS-SSIM(muti-scale SSIM)

7.2. (human) perception-aware metriics

the visual perception quality
(1) FID(Frechet Inception diistance)
(2) LPIPS(learned perceptual image patch similarity)
(3) P/U-IDS(pair-unpair Inception discriminative score)

8. Performance Evaluation 表现评估

8.1 Representative Image Inpainting Methods

(1) Models: RFR, MADF, DSI, CR-Fill, CoModGAN, LGNet, RePaint
(2) Dataset: CeleBA-HQ, Places2
(3) Mask: M1, M2, M3, M4, M5, M6
(4) Metrics: l1, PSNR, SSIM, MS-SSIM, FID, LP-IPS
(5) Loss: pixes reconstruction loss, perceptual loss, resnetpl loss, style loss, stylemeanstd,
percept-style loss, lsgan

8.2 Loss Functions

同1-1.1-(2) training objects

9. Inpainting-based Application 基于图像修复的领域应⽤

(1) Object Removal
(2) Text Editing
(3) Old Photo Restoration
(4) Image Compression
(5) Text-guided image editing

Reference

  1. Deep Learning-based Image and Video Inpainting: A Survey
相关推荐
从零开始学习人工智能1 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发1 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu1232 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一4 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
ACP广源盛139246256736 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超6 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶7 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309168 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习
老兵发新帖8 小时前
主流神经网络快速应用指南
人工智能·深度学习·神经网络
AI量化投资实验室8 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习