计算机视觉——图像修复综述篇

目录

[1. Deterministic Image Inpainting 判别器图像修复](#1. Deterministic Image Inpainting 判别器图像修复)

[1.1. sigle-shot framework](#1.1. sigle-shot framework)

[(1) Generators](#(1) Generators)

[(2) training objects / Loss Functions](#(2) training objects / Loss Functions)

[1.2. two-stage framework](#1.2. two-stage framework)

[2. Stochastic Image Inpainting 随机图像修复](#2. Stochastic Image Inpainting 随机图像修复)

[2.1. VAE-based methods](#2.1. VAE-based methods)

[2.2. GAN-based methods](#2.2. GAN-based methods)

[2.3. Flow-based methods](#2.3. Flow-based methods)

[2.4. MLM-based methods](#2.4. MLM-based methods)

[2.5. Diffusion model-based methods](#2.5. Diffusion model-based methods)

[3. text-guided image inpainting ⽂本引导的图像修复](#3. text-guided image inpainting ⽂本引导的图像修复)

[4. Inpainting Mask 掩码机制](#4. Inpainting Mask 掩码机制)

[(1) regular mask](#(1) regular mask)

[(2) irregular mask](#(2) irregular mask)

[5. Loss Function 损失函数](#5. Loss Function 损失函数)

[6. Dataset 图像修复领域数据集](#6. Dataset 图像修复领域数据集)

[(1) faces(CelebA & CelebA-HQ)](#(1) faces(CelebA & CelebA-HQ))

[(2) real-world encountered scenes(Places2)](#(2) real-world encountered scenes(Places2))

[(3) street scenes(Paris)](#(3) street scenes(Paris))

[(4) texture(DTD)](#(4) texture(DTD))

[(5) objects (ImageNet)](#(5) objects (ImageNet))

[7. Evaluation Protocol 评估指标](#7. Evaluation Protocol 评估指标)

[7.1. pixel-aware metrics](#7.1. pixel-aware metrics)

[7.2. (human) perception-aware metriics](#7.2. (human) perception-aware metriics)

[8. Performance Evaluation 表现评估](#8. Performance Evaluation 表现评估)

[8.1 Representative Image Inpainting Methods](#8.1 Representative Image Inpainting Methods)

[8.2 Loss Functions](#8.2 Loss Functions)

[9. Inpainting-based Application 基于图像修复的领域应⽤](#9. Inpainting-based Application 基于图像修复的领域应⽤)

[(1) Object Removal](#(1) Object Removal)

[(2) Text Editing](#(2) Text Editing)

[(3) Old Photo Restoration](#(3) Old Photo Restoration)

[(4) Image Compression](#(4) Image Compression)

[(5) Text-guided image editing](#(5) Text-guided image editing)

Reference


1. Deterministic Image Inpainting 判别器图像修复

1.1. sigle-shot framework
(1) Generators
  1. mask-aware design
  2. attention mechanism
  3. multi-scale aggregation
  4. transform domain
  5. encoder-decoder connection
  6. deep prior guidance
(2) training objects / Loss Functions
  1. Pixel-wise reconstruction loss
  2. perceptual loss
  3. style loss
  4. adversarial loss
  5. prevalent training objectives
1.2. two-stage framework

(1) coarse-to-fiine methods
(2) structure-then-texture methods

2. Stochastic Image Inpainting 随机图像修复

2.1. VAE-based methods
2.2. GAN-based methods
2.3. Flow-based methods
2.4. MLM-based methods
2.5. Diffusion model-based methods

(1) sample stratage design
(2) computational cost reduction

3. text-guided image inpainting ⽂本引导的图像修复

4. Inpainting Mask 掩码机制

(1) regular mask
(2) irregular mask

5. Loss Function 损失函数

同1-1.1-(2) training objects

6. Dataset 图像修复领域数据集

(1) faces(CelebA & CelebA-HQ)
(2) real-world encountered scenes(Places2)
(3) street scenes(Paris)
(4) texture(DTD)
(5) objects (ImageNet)

7. Evaluation Protocol 评估指标

7.1. pixel-aware metrics

focus on the precision of reconstructed pixels
(1) l1 error
(1) l2 error
(3) PSNR(peak signal-to-noise ratio)
(4) SSIM(the structure similarity index)
(5) MS-SSIM(muti-scale SSIM)

7.2. (human) perception-aware metriics

the visual perception quality
(1) FID(Frechet Inception diistance)
(2) LPIPS(learned perceptual image patch similarity)
(3) P/U-IDS(pair-unpair Inception discriminative score)

8. Performance Evaluation 表现评估

8.1 Representative Image Inpainting Methods

(1) Models: RFR, MADF, DSI, CR-Fill, CoModGAN, LGNet, RePaint
(2) Dataset: CeleBA-HQ, Places2
(3) Mask: M1, M2, M3, M4, M5, M6
(4) Metrics: l1, PSNR, SSIM, MS-SSIM, FID, LP-IPS
(5) Loss: pixes reconstruction loss, perceptual loss, resnetpl loss, style loss, stylemeanstd,
percept-style loss, lsgan

8.2 Loss Functions

同1-1.1-(2) training objects

9. Inpainting-based Application 基于图像修复的领域应⽤

(1) Object Removal
(2) Text Editing
(3) Old Photo Restoration
(4) Image Compression
(5) Text-guided image editing

Reference

  1. Deep Learning-based Image and Video Inpainting: A Survey
相关推荐
XianxinMao12 分钟前
2024大模型双向突破:MoE架构创新与小模型崛起
人工智能·架构
Francek Chen24 分钟前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
pchmi1 小时前
C# OpenCV机器视觉:红外体温检测
人工智能·数码相机·opencv·计算机视觉·c#·机器视觉·opencvsharp
认知作战壳吉桔1 小时前
中国认知作战研究中心:从认知战角度分析2007年iPhone发布
大数据·人工智能·新质生产力·认知战·认知战研究中心
软件公司.乐学2 小时前
安全生产算法一体机定制
人工智能·安全
好评笔记2 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
kcarly2 小时前
知识图谱都有哪些常见算法
人工智能·算法·知识图谱
dddcyy2 小时前
利用现有模型处理面部视频获取特征向量(3)
人工智能·深度学习
Fxrain2 小时前
[Computer Vision]实验三:图像拼接
人工智能·计算机视觉
2301_780356702 小时前
为医院量身定制做“旧改”| 全视通物联网智慧病房
大数据·人工智能·科技·健康医疗