【案例】—— 基于OpenCV方法的指纹验证

一、案例整体介绍

  • 下图中上面一张指纹图片与下面两张图片中的其中一个指纹是同一个指纹
  • 分别将上面的指纹图片与下面的两张图片进行匹配验证
  • 在model(模板指纹图片)与验证的两张指纹图片的2次匹配中,分别需要提取出模板指纹图片与验证指纹图片的特征(特征检测),并检测关键点和计算描述符
  • 对检测出的描述符进行匹配,满足匹配阈值的要求则匹配成功

二、代码解释

  • 进行匹配验证的三个关键步骤如下:

    • 1.计算特征描述符 :使用如SIFT特征检测器 和描述子来计算图像中的特征点和对应的描述符。
    • 2.创建匹配器 :使用 cv2.BFMatcher() 创建一个暴力匹配器实例
    • 3.进行KNN匹配 :使用 knnMatch() 方法(实际上是BFMatcher的knnMatch()方法)来找到每个特征点的K个最佳匹配
  • 完整代码

    python 复制代码
    import cv2
    
    
    # 定义显示图片的函数
    def cv_show(name, img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
    
    
    # 创建验证函数
    def verification(src, model):
        # 创建SIFT特征提取器
        sift = cv2.SIFT_create()
        # 对源指纹图像 检测关键点和计算描述符(特征向量)
        kp1, des1 = sift.detectAndCompute(src, None)
        # 对模板指纹图像 检测关键点和计算描述符
        kp2, des2 = sift.detectAndCompute(model, None)
        # 创建BFMatcher暴力匹配器
        BF = cv2.BFMatcher()
        # 使用k近邻匹配(des1中的每个描述符与des2中的最近2个描述符进行匹配)
        matches = BF.knnMatch(des1, des2, k=2)
    
        ok = []  # 用于存储被认为是"好"的匹配对(即满足最近距离与次近距离比值条件的匹配对)
        for m, n in matches:
            # 使用了固定的距离比率阈值(这里设为 0.8)来判断匹配的是否足够好,这个值可能需要根据具体图片数据进行调整
            if m.distance < 0.8 * n.distance:
                ok.append(m)
        # 统计通过筛选的匹配数量
        num = len(ok)
        if num >= 500:  # 如果有500及以上个最佳匹配结果则为匹配成功,这个值也需要根据图片数据和实际情况进行调整
            result = "认证通过"
        else:
            result = "认证失败"
        return result
    
    
    """ 读取三张指纹图片并显示 """
    src1 = cv2.imread("src1.bmp")
    cv_show('src1', src1)
    src2 = cv2.imread('src2.bmp')
    cv_show('src2', src2)
    model = cv2.imread('model.bmp')
    cv_show('model', model)
    
    """ 调用验证函数将两张验证图片与模板图片进行验证 """
    result1 = verification(src1, model)
    result2 = verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)
  • 验证结果如下:

相关推荐
AI_Mind几秒前
Gemini 2.0:面向智能体时代的全新 AI 模型
人工智能·搜索引擎
i查拉图斯特拉如是1 小时前
基于MindSpore NLP的PEFT微调
人工智能·自然语言处理
mahuifa1 小时前
QtCreator配置github copilot实现AI辅助编程
人工智能·ai编程·github copilot·qtcreator
千穹凌帝1 小时前
基于深度学习多图像融合的屏幕缺陷检测方案
人工智能·深度学习·数码相机
张叔zhangshu3 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
深度学习lover6 小时前
[项目代码] YOLOv8 遥感航拍飞机和船舶识别 [目标检测]
python·yolo·目标检测·计算机视觉·遥感航拍飞机和船舶识别
云起无垠7 小时前
【论文速读】| FirmRCA:面向 ARM 嵌入式固件的后模糊测试分析,并实现高效的基于事件的故障定位
人工智能·自动化
Leweslyh9 小时前
物理信息神经网络(PINN)八课时教案
人工智能·深度学习·神经网络·物理信息神经网络
love you joyfully9 小时前
目标检测与R-CNN——pytorch与paddle实现目标检测与R-CNN
人工智能·pytorch·目标检测·cnn·paddle
该醒醒了~9 小时前
PaddlePaddle推理模型利用Paddle2ONNX转换成onnx模型
人工智能·paddlepaddle