【案例】—— 基于OpenCV方法的指纹验证

一、案例整体介绍

  • 下图中上面一张指纹图片与下面两张图片中的其中一个指纹是同一个指纹
  • 分别将上面的指纹图片与下面的两张图片进行匹配验证
  • 在model(模板指纹图片)与验证的两张指纹图片的2次匹配中,分别需要提取出模板指纹图片与验证指纹图片的特征(特征检测),并检测关键点和计算描述符
  • 对检测出的描述符进行匹配,满足匹配阈值的要求则匹配成功

二、代码解释

  • 进行匹配验证的三个关键步骤如下:

    • 1.计算特征描述符 :使用如SIFT特征检测器 和描述子来计算图像中的特征点和对应的描述符。
    • 2.创建匹配器 :使用 cv2.BFMatcher() 创建一个暴力匹配器实例
    • 3.进行KNN匹配 :使用 knnMatch() 方法(实际上是BFMatcher的knnMatch()方法)来找到每个特征点的K个最佳匹配
  • 完整代码

    python 复制代码
    import cv2
    
    
    # 定义显示图片的函数
    def cv_show(name, img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
    
    
    # 创建验证函数
    def verification(src, model):
        # 创建SIFT特征提取器
        sift = cv2.SIFT_create()
        # 对源指纹图像 检测关键点和计算描述符(特征向量)
        kp1, des1 = sift.detectAndCompute(src, None)
        # 对模板指纹图像 检测关键点和计算描述符
        kp2, des2 = sift.detectAndCompute(model, None)
        # 创建BFMatcher暴力匹配器
        BF = cv2.BFMatcher()
        # 使用k近邻匹配(des1中的每个描述符与des2中的最近2个描述符进行匹配)
        matches = BF.knnMatch(des1, des2, k=2)
    
        ok = []  # 用于存储被认为是"好"的匹配对(即满足最近距离与次近距离比值条件的匹配对)
        for m, n in matches:
            # 使用了固定的距离比率阈值(这里设为 0.8)来判断匹配的是否足够好,这个值可能需要根据具体图片数据进行调整
            if m.distance < 0.8 * n.distance:
                ok.append(m)
        # 统计通过筛选的匹配数量
        num = len(ok)
        if num >= 500:  # 如果有500及以上个最佳匹配结果则为匹配成功,这个值也需要根据图片数据和实际情况进行调整
            result = "认证通过"
        else:
            result = "认证失败"
        return result
    
    
    """ 读取三张指纹图片并显示 """
    src1 = cv2.imread("src1.bmp")
    cv_show('src1', src1)
    src2 = cv2.imread('src2.bmp')
    cv_show('src2', src2)
    model = cv2.imread('model.bmp')
    cv_show('model', model)
    
    """ 调用验证函数将两张验证图片与模板图片进行验证 """
    result1 = verification(src1, model)
    result2 = verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)
  • 验证结果如下:

相关推荐
说私域30 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的营销创新研究——以“种草”实践践行“以人为本”理念
人工智能·小程序
说私域33 分钟前
电商栏目细分与定制开发开源AI智能名片S2B2C商城小程序:洞察力与执行力的协同共进
人工智能·小程序
山烛1 小时前
深度学习入门:神经网络
人工智能·深度学习·神经网络·bp神经网络·前向传播
苏苏susuus1 小时前
NLP:Transformer各子模块作用(特别分享1)
人工智能·自然语言处理·transformer
IT_陈寒2 小时前
Java性能优化实战:5个立竿见影的技巧让你的应用提速50%
前端·人工智能·后端
深兰科技2 小时前
深兰科技:搬迁公告,我们搬家了
javascript·人工智能·python·科技·typescript·laravel·深兰科技
有点不太正常3 小时前
《Password Guessing Using Large Language Models》——论文阅读
人工智能·语言模型·自然语言处理·密码学
lxmyzzs3 小时前
【图像算法 - 23】工业应用:基于深度学习YOLO12与OpenCV的仪器仪表智能识别系统
人工智能·深度学习·opencv·算法·计算机视觉·图像算法·仪器仪表识别
Learn Beyond Limits3 小时前
Multi-output Classification and Multi-label Classification|多输出分类和多标签分类
人工智能·深度学习·神经网络·算法·机器学习·分类·吴恩达
嘀咕博客3 小时前
超级助理:百度智能云发布的AI助理应用
人工智能·百度·ai工具