【案例】—— 基于OpenCV方法的指纹验证

一、案例整体介绍

  • 下图中上面一张指纹图片与下面两张图片中的其中一个指纹是同一个指纹
  • 分别将上面的指纹图片与下面的两张图片进行匹配验证
  • 在model(模板指纹图片)与验证的两张指纹图片的2次匹配中,分别需要提取出模板指纹图片与验证指纹图片的特征(特征检测),并检测关键点和计算描述符
  • 对检测出的描述符进行匹配,满足匹配阈值的要求则匹配成功

二、代码解释

  • 进行匹配验证的三个关键步骤如下:

    • 1.计算特征描述符 :使用如SIFT特征检测器 和描述子来计算图像中的特征点和对应的描述符。
    • 2.创建匹配器 :使用 cv2.BFMatcher() 创建一个暴力匹配器实例
    • 3.进行KNN匹配 :使用 knnMatch() 方法(实际上是BFMatcher的knnMatch()方法)来找到每个特征点的K个最佳匹配
  • 完整代码

    python 复制代码
    import cv2
    
    
    # 定义显示图片的函数
    def cv_show(name, img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
    
    
    # 创建验证函数
    def verification(src, model):
        # 创建SIFT特征提取器
        sift = cv2.SIFT_create()
        # 对源指纹图像 检测关键点和计算描述符(特征向量)
        kp1, des1 = sift.detectAndCompute(src, None)
        # 对模板指纹图像 检测关键点和计算描述符
        kp2, des2 = sift.detectAndCompute(model, None)
        # 创建BFMatcher暴力匹配器
        BF = cv2.BFMatcher()
        # 使用k近邻匹配(des1中的每个描述符与des2中的最近2个描述符进行匹配)
        matches = BF.knnMatch(des1, des2, k=2)
    
        ok = []  # 用于存储被认为是"好"的匹配对(即满足最近距离与次近距离比值条件的匹配对)
        for m, n in matches:
            # 使用了固定的距离比率阈值(这里设为 0.8)来判断匹配的是否足够好,这个值可能需要根据具体图片数据进行调整
            if m.distance < 0.8 * n.distance:
                ok.append(m)
        # 统计通过筛选的匹配数量
        num = len(ok)
        if num >= 500:  # 如果有500及以上个最佳匹配结果则为匹配成功,这个值也需要根据图片数据和实际情况进行调整
            result = "认证通过"
        else:
            result = "认证失败"
        return result
    
    
    """ 读取三张指纹图片并显示 """
    src1 = cv2.imread("src1.bmp")
    cv_show('src1', src1)
    src2 = cv2.imread('src2.bmp')
    cv_show('src2', src2)
    model = cv2.imread('model.bmp')
    cv_show('model', model)
    
    """ 调用验证函数将两张验证图片与模板图片进行验证 """
    result1 = verification(src1, model)
    result2 = verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)
  • 验证结果如下:

相关推荐
newxtc21 分钟前
【魔珐有言-注册/登录安全分析报告-无验证方式导致安全隐患】
人工智能·安全·网易易盾·ai写作·极验
EasyCVR1 小时前
GA/T1400视图库平台EasyCVR视频融合平台HLS视频协议是什么?
服务器·网络·人工智能·音视频
V搜xhliang02461 小时前
基于深度学习的地物类型的提取
开发语言·人工智能·python·深度学习·神经网络·学习·conda
青椒大仙KI111 小时前
24/11/14 算法笔记<强化学习> 马尔可夫
人工智能·笔记·机器学习
GOTXX1 小时前
NAT、代理服务与内网穿透技术全解析
linux·网络·人工智能·计算机网络·智能路由器
进击的小小学生1 小时前
2024年第45周ETF周报
大数据·人工智能
TaoYuan__2 小时前
机器学习【激活函数】
人工智能·机器学习
TaoYuan__2 小时前
机器学习的常用算法
人工智能·算法·机器学习
正义的彬彬侠2 小时前
协方差矩阵及其计算方法
人工智能·机器学习·协方差·协方差矩阵
致Great2 小时前
Invar-RAG:基于不变性对齐的LLM检索方法提升生成质量
人工智能·大模型·rag