PaddlePaddle推理模型利用Paddle2ONNX转换成onnx模型

训练paddleocr模型,可以按照如下教程或者直接百度其他的

PaddleOCR训练自己的数据集(中英文)(全套)和C#部署(半套)_c# paddleocr-CSDN博客

将训练后的模型转换成推理模型

-c后面是你配置的det 的yaml文件 -o Global.pretrained_model=后面是你训练后的模型 latest

lobal.save_inference_dir=保存转换后的推理模型位置

python 复制代码
python tools/export_model.py -c "./configs/endet_enrec_encls/en_PP_OCRV3_det_cml.yml" -o Global.pretrained_model="./output/det/ch_PP-OCR_v3_det3/latest" Global.save_inference_dir="./models/inf_det/"

rec的转换和上方的det一样

转换后是如下

然后在命令行中pip下载paddle2onnx和onnxruntime

python 复制代码
# 安装paddle2onnx
pip install paddle2onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装 ONNXRuntime,建议安装 1.9.0 版本,可根据环境更换版本号
pip install onnxruntime==1.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

转换命令如下

python 复制代码
paddle2onnx --model_dir saved_inference_model \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file model.onnx \
            --enable_dev_version True

如果看不明白,下方是我的转换命令

model_dir 是你训练模型的文件夹

model_filename 是结尾是 .pdmodel文件

params_filename 是结尾是 .pdiparams文件

save_file 保存转换后的onnx模型

当然rec和det以及旋转模型也是如下,一共有三个。

python 复制代码
paddle2onnx 
     --model_dir H:\\DL\\PaddleOCR-main\\models\\ch_PP-OCRv3_rec_infer
     --model_filename inference.pdmodel 
     --params_filename inference.pdiparams 
     --save_file F:\\Desk\\159\\inference.onnx

测试推理

onnxruntime推理

python 复制代码
python tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
--det_model_dir=./inference/det_onnx/model.onnx  \
--rec_model_dir=./inference/rec_onnx/model.onnx  \
--cls_model_dir=./inference/cls_onnx/model.onnx  \
--image_dir=./deploy/lite/imgs/lite_demo.png

优化模型命令

python 复制代码
python -m paddle2onnx.optimize --input_model model.onnx --output_model optimized_model.onnx
相关推荐
人工小情绪2 小时前
Clawbot (OpenClaw)简介
人工智能
2501_933329552 小时前
品牌公关AI化实践:Infoseek舆情系统技术架构解析
人工智能·自然语言处理
咋吃都不胖lyh2 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
xiucai_cs2 小时前
AI RAG 本地知识库实战
人工智能·知识库·dify·rag·ollama
zhangfeng11332 小时前
大模型微调时 Firefly(流萤)和 LlamaFactory(LLaMA Factory)这两个工具/框架之间做出合适的选择
人工智能·llama
zhangyifang_0093 小时前
MCP——AI连接现实世界的“标准接口”
人工智能
LOnghas12113 小时前
电动汽车充电接口自动识别与定位_yolo13-C3k2-Converse_六种主流充电接口检测分类
人工智能·目标跟踪·分类
编码小哥3 小时前
OpenCV图像滤波技术详解:从均值滤波到双边滤波
人工智能·opencv·均值算法
阿杰学AI3 小时前
AI核心知识78——大语言模型之CLM(简洁且通俗易懂版)
人工智能·算法·ai·语言模型·rag·clm·语境化语言模型
新缸中之脑3 小时前
氛围编程一个全栈AI交易应用
人工智能