PaddlePaddle推理模型利用Paddle2ONNX转换成onnx模型

训练paddleocr模型,可以按照如下教程或者直接百度其他的

PaddleOCR训练自己的数据集(中英文)(全套)和C#部署(半套)_c# paddleocr-CSDN博客

将训练后的模型转换成推理模型

-c后面是你配置的det 的yaml文件 -o Global.pretrained_model=后面是你训练后的模型 latest

lobal.save_inference_dir=保存转换后的推理模型位置

python 复制代码
python tools/export_model.py -c "./configs/endet_enrec_encls/en_PP_OCRV3_det_cml.yml" -o Global.pretrained_model="./output/det/ch_PP-OCR_v3_det3/latest" Global.save_inference_dir="./models/inf_det/"

rec的转换和上方的det一样

转换后是如下

然后在命令行中pip下载paddle2onnx和onnxruntime

python 复制代码
# 安装paddle2onnx
pip install paddle2onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装 ONNXRuntime,建议安装 1.9.0 版本,可根据环境更换版本号
pip install onnxruntime==1.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

转换命令如下

python 复制代码
paddle2onnx --model_dir saved_inference_model \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file model.onnx \
            --enable_dev_version True

如果看不明白,下方是我的转换命令

model_dir 是你训练模型的文件夹

model_filename 是结尾是 .pdmodel文件

params_filename 是结尾是 .pdiparams文件

save_file 保存转换后的onnx模型

当然rec和det以及旋转模型也是如下,一共有三个。

python 复制代码
paddle2onnx 
     --model_dir H:\\DL\\PaddleOCR-main\\models\\ch_PP-OCRv3_rec_infer
     --model_filename inference.pdmodel 
     --params_filename inference.pdiparams 
     --save_file F:\\Desk\\159\\inference.onnx

测试推理

onnxruntime推理

python 复制代码
python tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
--det_model_dir=./inference/det_onnx/model.onnx  \
--rec_model_dir=./inference/rec_onnx/model.onnx  \
--cls_model_dir=./inference/cls_onnx/model.onnx  \
--image_dir=./deploy/lite/imgs/lite_demo.png

优化模型命令

python 复制代码
python -m paddle2onnx.optimize --input_model model.onnx --output_model optimized_model.onnx
相关推荐
机器学习之心1 小时前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER1 小时前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao1 小时前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu2 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii2 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
ai产品老杨3 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd4 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室5 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风6 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo37 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘