PaddlePaddle推理模型利用Paddle2ONNX转换成onnx模型

训练paddleocr模型,可以按照如下教程或者直接百度其他的

PaddleOCR训练自己的数据集(中英文)(全套)和C#部署(半套)_c# paddleocr-CSDN博客

将训练后的模型转换成推理模型

-c后面是你配置的det 的yaml文件 -o Global.pretrained_model=后面是你训练后的模型 latest

lobal.save_inference_dir=保存转换后的推理模型位置

python 复制代码
python tools/export_model.py -c "./configs/endet_enrec_encls/en_PP_OCRV3_det_cml.yml" -o Global.pretrained_model="./output/det/ch_PP-OCR_v3_det3/latest" Global.save_inference_dir="./models/inf_det/"

rec的转换和上方的det一样

转换后是如下

然后在命令行中pip下载paddle2onnx和onnxruntime

python 复制代码
# 安装paddle2onnx
pip install paddle2onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装 ONNXRuntime,建议安装 1.9.0 版本,可根据环境更换版本号
pip install onnxruntime==1.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

转换命令如下

python 复制代码
paddle2onnx --model_dir saved_inference_model \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file model.onnx \
            --enable_dev_version True

如果看不明白,下方是我的转换命令

model_dir 是你训练模型的文件夹

model_filename 是结尾是 .pdmodel文件

params_filename 是结尾是 .pdiparams文件

save_file 保存转换后的onnx模型

当然rec和det以及旋转模型也是如下,一共有三个。

python 复制代码
paddle2onnx 
     --model_dir H:\\DL\\PaddleOCR-main\\models\\ch_PP-OCRv3_rec_infer
     --model_filename inference.pdmodel 
     --params_filename inference.pdiparams 
     --save_file F:\\Desk\\159\\inference.onnx

测试推理

onnxruntime推理

python 复制代码
python tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
--det_model_dir=./inference/det_onnx/model.onnx  \
--rec_model_dir=./inference/rec_onnx/model.onnx  \
--cls_model_dir=./inference/cls_onnx/model.onnx  \
--image_dir=./deploy/lite/imgs/lite_demo.png

优化模型命令

python 复制代码
python -m paddle2onnx.optimize --input_model model.onnx --output_model optimized_model.onnx
相关推荐
云起无垠3 小时前
【论文速读】| FirmRCA:面向 ARM 嵌入式固件的后模糊测试分析,并实现高效的基于事件的故障定位
人工智能·自动化
Leweslyh5 小时前
物理信息神经网络(PINN)八课时教案
人工智能·深度学习·神经网络·物理信息神经网络
love you joyfully6 小时前
目标检测与R-CNN——pytorch与paddle实现目标检测与R-CNN
人工智能·pytorch·目标检测·cnn·paddle
小树苗1936 小时前
DePIN潜力项目Spheron解读:激活闲置硬件,赋能Web3与AI
人工智能·web3
凡人的AI工具箱6 小时前
每天40分玩转Django:Django测试
数据库·人工智能·后端·python·django·sqlite
大多_C6 小时前
BERT outputs
人工智能·深度学习·bert
Debroon7 小时前
乳腺癌多模态诊断解释框架:CNN + 可解释 AI 可视化
人工智能·神经网络·cnn
反方向的钟儿7 小时前
非结构化数据分析与应用(Unstructured data analysis and applications)(pt3)图像数据分析1
人工智能·计算机视觉·数据分析
Heartsuit7 小时前
LLM大语言模型私有化部署-使用Dify的工作流编排打造专属AI搜索引擎
人工智能·dify·ollama·qwen2.5·ai搜索引擎·tavily search·工作流编排