离线安装 Ollama及加载离线模型

前言

本地已经玩了 ollama 很长时间了, 今天打算把 ollama 安装到服务器上, 但是服务器没有外网, 所以只能离线安装了, 找了一下离线装教程还是比较少了, 所以自己写一篇, 以便以后查阅.

离线安装 Ollama

下载安装包

在官方 Release 中进行下载, 根据服务器的 cpu 类型下载对应的安装包, 下载完成后上传到服务器上.

安装

解压安装包 ollama linux amd64.tgz, 进入到解压后的目录, 执行 install.sh 脚本进行安装.

bash 复制代码
# 解压安装包
tar -zxvf Ollama\ Linux\ AMD64.tgz
# 将 ollama 执行命令移动到 /usr/bin 目录下
sudo mv bin/ollama /usr/bin/ollama

启动并添加开机启动

1.创建执行用户, 这一步可以忽略, 可以直接设置 root 或其他有 ollama 执行权限的用户都可以

bash 复制代码
sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
sudo usermod -a -G ollama $(whoami)

2.创建配置文件

创建文件 /etc/systemd/system/ollama.service, 并填充如下内容, 其中的 UserGroup 根据上一步的选择填写

bash 复制代码
[Unit]
Description=Ollama Service
After=network-online.target

[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"

[Install]
WantedBy=default.target

然后执行如下命令

bash 复制代码
# 加载配置
sudo systemctl daemon-reload
# 设置开机启动
sudo systemctl enable ollama
# 启动 ollama 服务
sudo systemctl start ollama

离线安装模型

如下使用 gguf 模型安装方式, 模型安装的方式都差不多, 可以参考如下方式

Qwen2.5-3b

1.下载模型, 可以到 huggingface 上搜索对应模型的 gguf 版本, 如搜索 qwen2.5-3b-gguf

具体选那个微调版本都可以, 我们这里参考 ollama 上选择的模型版本, 如下图

我们直接在刚才找到的模型中, 点击 Files and versions, 找到在 ollama 中找到的版本, 点击下载

2.将下载后的文件上传到服务器的目录 /data/ollama, 并重命名为 qwen2.5-3b.gguf, (重命名为了方便后面引用) 3.在 /data/ollama 目录下创建文件 Modelfile, 添加如下内容

dockerfile 复制代码
# 上一步的模型名
FROM ./qwen2.5-3b.gguf

# 可以到 ollama 网站上的模型库去寻找, 如 qwen2.5-3b 的模板地址: https://ollama.com/library/qwen2.5:3b/blobs/eb4402837c78
# 直接复制 ollama 上的 Template 到如下三个双引号中间
TEMPLATE """{{- if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}
"""

# 这一步参考 ollama 上的 parameters, 但是 ollama 上的 qwen2.5-3b 是没有参数的, 按照下面的格式添加即可
PARAMETER stop "<|im_start|>"
PARAMETER stop "<|im_end|>"

4.执行如下命令, 加载并运行离线模型

bash 复制代码
# 通过模型描述文件, 创建并运行 qwen2.5 模型
ollama create qwen2.5 -f Modelfile
# 查看模型运行列表, 是否正在运行
ollama ls

# 通过 api 调用模型, 检测模型是否运行正常
curl --location --request POST 'http://127.0.0.1:11434/api/generate' \
--header 'Content-Type: application/json' \
--data '{
    "model": "qwen2.5",
    "stream": false,
    "prompt": "你好, 24节气的第一个节气是什么?"
}' \
-w "Time Total: %{time_total}s\n"

如下图, 正常返回回答内容, 表示模型成功安装

Llama3.2-3b

1.下载模型, 可以到 huggingface 上搜索对应模型的 gguf 版本, 如搜索 llama3.2-3b-gguf

具体选那个微调版本都可以, 我们这里参考 ollama 上选择的模型版本, 如下图

我们直接在刚才找到的模型中, 点击 Files and versions, 找到在 ollama 中找到的版本, 点击下载

2.将下载后的文件上传到服务器的目录 /data/ollama, 并重命名为 llama3.2-3b.gguf, (重命名为了方便后面引用) 3.在 /data/ollama 目录下创建文件 Modelfile, 添加如下内容

dockerfile 复制代码
# 上一步的模型名
FROM ./llama3.2-3b.gguf

# 可以到 ollama 网站上的模型库去寻找, 如 llama3.2-3b 的模板地址: https://ollama.com/library/llama3.2/blobs/966de95ca8a6
# 直接复制 ollama 上的 Template 到如下三个双引号中间
TEMPLATE """<|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023

{{ if .System }}{{ .System }}
{{- end }}
{{- if .Tools }}When you receive a tool call response, use the output to format an answer to the orginal user question.

You are a helpful assistant with tool calling capabilities.
{{- end }}<|eot_id|>
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 }}
{{- if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>
{{- if and $.Tools $last }}

Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.

Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.

{{ range $.Tools }}
{{- . }}
{{ end }}
{{ .Content }}<|eot_id|>
{{- else }}

{{ .Content }}<|eot_id|>
{{- end }}{{ if $last }}<|start_header_id|>assistant<|end_header_id|>

{{ end }}
{{- else if eq .Role "assistant" }}<|start_header_id|>assistant<|end_header_id|>
{{- if .ToolCalls }}
{{ range .ToolCalls }}
{"name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}}{{ end }}
{{- else }}

{{ .Content }}
{{- end }}{{ if not $last }}<|eot_id|>{{ end }}
{{- else if eq .Role "tool" }}<|start_header_id|>ipython<|end_header_id|>

{{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|>

{{ end }}
{{- end }}
{{- end }}
"""

# 这一步参考 ollama 上的 parameters, llama3.2-3b 的 params: https://ollama.com/library/llama3.2/blobs/56bb8bd477a5
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"

4.执行如下命令, 加载并运行离线模型

bash 复制代码
# 通过模型描述文件, 创建并运行 qwen2.5 模型
ollama create llama3.2 -f Modelfile
# 查看模型运行列表, 是否正在运行
ollama ls

# 通过 api 调用模型, 检测模型是否运行正常
curl --location --request POST 'http://127.0.0.1:11434/api/generate' \
--header 'Content-Type: application/json' \
--data '{
    "model": "llama3.2",
    "stream": false,
    "prompt": "你好, 24节气的第一个节气是什么?"
}' \
-w "Time Total: %{time_total}s\n"

如下图, 正常返回回答内容, 表示模型成功安装

最后

Ollama 是非常好用的模型安装工具, 希望大家玩的开心! 如果安装有问题或者有什么使用技巧都可以在评论区交流~~~

相关推荐
Warren2Lynch7 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale7 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant7 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138347 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo8 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms18 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑8 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei8 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing9 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
Lkygo9 小时前
LlamaIndex使用指南
linux·开发语言·python·llama