【最优化方法】最速下降法

给出点

复制代码
x = [1,4,5,8,12]
y = [7,9,15,14,27]

要找出温度和冰淇淋销量之间的关系,通过线性回归来拟合求出属性和结果之间的线性关系。

如果直接把这些点连起来,是吃力不讨好的,因为如果有新数据进来大概率不在这条线上,这个行为也叫做过拟合。

对于这种明显有相关关系的数据,直接用一条直线去拟合这些数据,一次函数y=kx+b,k、b确定了直线也就确定了。找最合适的直线的过程就叫线性回归。

评判标准

找出每个真实数据点到直线的距离。

列个表看看:

定义损失函数 f(k,b)=z

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.array([1, 4, 5, 8, 12])
y_true = np.array([7, 9, 15, 14, 27])

def model(x, k, b):
    return k * x + b
def mse_loss(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 生成参数 k 和 b 的取值范围
k_values = np.linspace(0, 3, 100)  
b_values = np.linspace(-5, 5, 100) 

# 创建网格
K, B = np.meshgrid(k_values, b_values)

# 计算每个 (k, b) 组合下的损失值
Z = np.zeros_like(K)
for i in range(len(k_values)):
    for j in range(len(b_values)):
        y_pred = model(x, K[i, j], B[i, j])
        Z[i, j] = mse_loss(y_true, y_pred)

# 绘制三维损失函数曲面图
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(K, B, Z, cmap='viridis')

ax.set_xlabel('Slope (k)')
ax.set_ylabel('Intercept (b)')
ax.set_zlabel('MSE Loss')
ax.set_title('3D Loss Function Surface')

plt.show()

问题就转化成了找到图像的谷底。

对于一次函数:

高等数学下中对于梯度的介绍:

相关推荐
渡我白衣17 分钟前
多路转接之epoll:理论篇
人工智能·神经网络·网络协议·tcp/ip·自然语言处理·信息与通信·tcpdump
明月照山海-18 分钟前
机器学习周报二十八
人工智能·机器学习
weixin_437497776 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端6 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat6 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技7 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪7 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子7 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z7 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人7 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程