【最优化方法】最速下降法

给出点

复制代码
x = [1,4,5,8,12]
y = [7,9,15,14,27]

要找出温度和冰淇淋销量之间的关系,通过线性回归来拟合求出属性和结果之间的线性关系。

如果直接把这些点连起来,是吃力不讨好的,因为如果有新数据进来大概率不在这条线上,这个行为也叫做过拟合。

对于这种明显有相关关系的数据,直接用一条直线去拟合这些数据,一次函数y=kx+b,k、b确定了直线也就确定了。找最合适的直线的过程就叫线性回归。

评判标准

找出每个真实数据点到直线的距离。

列个表看看:

定义损失函数 f(k,b)=z

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.array([1, 4, 5, 8, 12])
y_true = np.array([7, 9, 15, 14, 27])

def model(x, k, b):
    return k * x + b
def mse_loss(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 生成参数 k 和 b 的取值范围
k_values = np.linspace(0, 3, 100)  
b_values = np.linspace(-5, 5, 100) 

# 创建网格
K, B = np.meshgrid(k_values, b_values)

# 计算每个 (k, b) 组合下的损失值
Z = np.zeros_like(K)
for i in range(len(k_values)):
    for j in range(len(b_values)):
        y_pred = model(x, K[i, j], B[i, j])
        Z[i, j] = mse_loss(y_true, y_pred)

# 绘制三维损失函数曲面图
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(K, B, Z, cmap='viridis')

ax.set_xlabel('Slope (k)')
ax.set_ylabel('Intercept (b)')
ax.set_zlabel('MSE Loss')
ax.set_title('3D Loss Function Surface')

plt.show()

问题就转化成了找到图像的谷底。

对于一次函数:

高等数学下中对于梯度的介绍:

相关推荐
才思喷涌的小书虫3 分钟前
打破 3D 感知瓶颈:OVSeg3R 如何推动开集 3D 实例分割应用落地
人工智能·目标检测·计算机视觉·3d·具身智能·数据标注·图像标注
言之。11 分钟前
2026 年 1 月 15 日 - 21 日国内外 AI 科技大事及热点深度整理报告
人工智能·科技
weisian15113 分钟前
进阶篇-4-数学篇-3--深度解析AI中的向量概念:从生活到代码,一文吃透核心逻辑
人工智能·python·生活·向量
这儿有一堆花13 分钟前
AI视频生成的底层逻辑与技术架构
人工智能·音视频
Fairy要carry15 分钟前
面试-Encoder-Decoder预训练思路
人工智能
杭州泽沃电子科技有限公司15 分钟前
“不速之客”的威胁:在线监测如何筑起抵御小动物的智能防线
人工智能·在线监测
MistaCloud17 分钟前
Pytorch进阶训练技巧(二)之梯度层面的优化策略
人工智能·pytorch·python·深度学习
永远都不秃头的程序员(互关)17 分钟前
【决策树深度探索(一)】从零搭建:机器学习的“智慧之树”——决策树分类算法!
算法·决策树·机器学习
农夫山泉2号20 分钟前
【rk】——rk3588推理获得logits
人工智能·rk3588·ppl
HaiLang_IT20 分钟前
基于图像处理的的蔬菜病害检测方法研究与实现
图像处理·人工智能