【最优化方法】最速下降法

给出点

复制代码
x = [1,4,5,8,12]
y = [7,9,15,14,27]

要找出温度和冰淇淋销量之间的关系,通过线性回归来拟合求出属性和结果之间的线性关系。

如果直接把这些点连起来,是吃力不讨好的,因为如果有新数据进来大概率不在这条线上,这个行为也叫做过拟合。

对于这种明显有相关关系的数据,直接用一条直线去拟合这些数据,一次函数y=kx+b,k、b确定了直线也就确定了。找最合适的直线的过程就叫线性回归。

评判标准

找出每个真实数据点到直线的距离。

列个表看看:

定义损失函数 f(k,b)=z

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.array([1, 4, 5, 8, 12])
y_true = np.array([7, 9, 15, 14, 27])

def model(x, k, b):
    return k * x + b
def mse_loss(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 生成参数 k 和 b 的取值范围
k_values = np.linspace(0, 3, 100)  
b_values = np.linspace(-5, 5, 100) 

# 创建网格
K, B = np.meshgrid(k_values, b_values)

# 计算每个 (k, b) 组合下的损失值
Z = np.zeros_like(K)
for i in range(len(k_values)):
    for j in range(len(b_values)):
        y_pred = model(x, K[i, j], B[i, j])
        Z[i, j] = mse_loss(y_true, y_pred)

# 绘制三维损失函数曲面图
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(K, B, Z, cmap='viridis')

ax.set_xlabel('Slope (k)')
ax.set_ylabel('Intercept (b)')
ax.set_zlabel('MSE Loss')
ax.set_title('3D Loss Function Surface')

plt.show()

问题就转化成了找到图像的谷底。

对于一次函数:

高等数学下中对于梯度的介绍:

相关推荐
Francek Chen1 小时前
【自然语言处理】应用04:自然语言推断与数据集
人工智能·pytorch·深度学习·神经网络·自然语言处理
硬核创业者1 小时前
3个低门槛创业灵感
人工智能
冰西瓜6008 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术8 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技9 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路9 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟9 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆9 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站10 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats11 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown