【最优化方法】最速下降法

给出点

复制代码
x = [1,4,5,8,12]
y = [7,9,15,14,27]

要找出温度和冰淇淋销量之间的关系,通过线性回归来拟合求出属性和结果之间的线性关系。

如果直接把这些点连起来,是吃力不讨好的,因为如果有新数据进来大概率不在这条线上,这个行为也叫做过拟合。

对于这种明显有相关关系的数据,直接用一条直线去拟合这些数据,一次函数y=kx+b,k、b确定了直线也就确定了。找最合适的直线的过程就叫线性回归。

评判标准

找出每个真实数据点到直线的距离。

列个表看看:

定义损失函数 f(k,b)=z

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.array([1, 4, 5, 8, 12])
y_true = np.array([7, 9, 15, 14, 27])

def model(x, k, b):
    return k * x + b
def mse_loss(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 生成参数 k 和 b 的取值范围
k_values = np.linspace(0, 3, 100)  
b_values = np.linspace(-5, 5, 100) 

# 创建网格
K, B = np.meshgrid(k_values, b_values)

# 计算每个 (k, b) 组合下的损失值
Z = np.zeros_like(K)
for i in range(len(k_values)):
    for j in range(len(b_values)):
        y_pred = model(x, K[i, j], B[i, j])
        Z[i, j] = mse_loss(y_true, y_pred)

# 绘制三维损失函数曲面图
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(K, B, Z, cmap='viridis')

ax.set_xlabel('Slope (k)')
ax.set_ylabel('Intercept (b)')
ax.set_zlabel('MSE Loss')
ax.set_title('3D Loss Function Surface')

plt.show()

问题就转化成了找到图像的谷底。

对于一次函数:

高等数学下中对于梯度的介绍:

相关推荐
带娃的IT创业者4 分钟前
《AI大模型应知应会100篇》第68篇:移动应用中的大模型功能开发 —— 用 React Native 打造你的语音笔记摘要 App
人工智能·笔记·react native
Godspeed Zhao12 分钟前
自动驾驶中的传感器技术42——Radar(3)
人工智能·机器学习·自动驾驶
Godspeed Zhao14 分钟前
自动驾驶中的传感器技术41——Radar(2)
人工智能·机器学习·自动驾驶
非门由也1 小时前
《sklearn机器学习——数据预处理》类别特征编码
人工智能·机器学习·sklearn
FairyGirlhub2 小时前
神经网络的初始化:权重与偏置的数学策略
人工智能·深度学习·神经网络
大写-凌祁6 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热7 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生7 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn7 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威8 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测