如何基于开源模型实现语音识别

要使用Python语言开发一个语音识别小程序,可以使用whisper模型(https://github.com/snakers4/whisper)来实现。

下面是一个简单的示例代码,可以将语音文件转换为文本:

python 复制代码
import torch
import torchaudio
import argparse

# 加载whisper模型
model = torch.hub.load('snakers4/whisper', 'english_whisper')

# 解析命令行参数
parser = argparse.ArgumentParser(description='Speech to text')
parser.add_argument('--audio', type=str, help='Path to audio file')
args = parser.parse_args()

# 加载音频文件
waveform, sample_rate = torchaudio.load(args.audio)

# 预处理音频
waveform = waveform.unsqueeze(0)

# 执行语音识别
with torch.no_grad():
    output = model(waveform)

# 输出结果
print(output)

注意,你需要先安装torchtorchaudio库,并通过命令行参数--audio指定要识别的音频文件路径。

这只是一个简单的示例,你可以根据自己的需求进行更进一步的处理和优化。

相关推荐
狼爷10 分钟前
【译】Skills 详解:Skills 与 prompts、Projects、MCP 和 subagents 的比较
人工智能·aigc
元智启15 分钟前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
ISACA中国42 分钟前
2026年网络安全与AI趋势预测
人工智能·安全·web安全
lambo mercy1 小时前
自回归生成任务
人工智能·数据挖掘·回归
5Gcamera1 小时前
边缘计算视频分析智能AI盒子使用说明
人工智能·音视频·边缘计算
hg01181 小时前
埃及:在变局中重塑发展韧性
大数据·人工智能·物联网
线束线缆组件品替网1 小时前
IO Audio Technologies 音频线缆抗干扰与带宽设计要点
网络·人工智能·汽车·电脑·音视频·材料工程
Hcoco_me1 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto2 小时前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙2 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习