如何基于开源模型实现语音识别

要使用Python语言开发一个语音识别小程序,可以使用whisper模型(https://github.com/snakers4/whisper)来实现。

下面是一个简单的示例代码,可以将语音文件转换为文本:

python 复制代码
import torch
import torchaudio
import argparse

# 加载whisper模型
model = torch.hub.load('snakers4/whisper', 'english_whisper')

# 解析命令行参数
parser = argparse.ArgumentParser(description='Speech to text')
parser.add_argument('--audio', type=str, help='Path to audio file')
args = parser.parse_args()

# 加载音频文件
waveform, sample_rate = torchaudio.load(args.audio)

# 预处理音频
waveform = waveform.unsqueeze(0)

# 执行语音识别
with torch.no_grad():
    output = model(waveform)

# 输出结果
print(output)

注意,你需要先安装torchtorchaudio库,并通过命令行参数--audio指定要识别的音频文件路径。

这只是一个简单的示例,你可以根据自己的需求进行更进一步的处理和优化。

相关推荐
编码小哥14 分钟前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念23 分钟前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路1 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen1 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗1 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型2 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd3 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白3 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_804 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20204 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能