如何基于开源模型实现语音识别

要使用Python语言开发一个语音识别小程序,可以使用whisper模型(https://github.com/snakers4/whisper)来实现。

下面是一个简单的示例代码,可以将语音文件转换为文本:

python 复制代码
import torch
import torchaudio
import argparse

# 加载whisper模型
model = torch.hub.load('snakers4/whisper', 'english_whisper')

# 解析命令行参数
parser = argparse.ArgumentParser(description='Speech to text')
parser.add_argument('--audio', type=str, help='Path to audio file')
args = parser.parse_args()

# 加载音频文件
waveform, sample_rate = torchaudio.load(args.audio)

# 预处理音频
waveform = waveform.unsqueeze(0)

# 执行语音识别
with torch.no_grad():
    output = model(waveform)

# 输出结果
print(output)

注意,你需要先安装torchtorchaudio库,并通过命令行参数--audio指定要识别的音频文件路径。

这只是一个简单的示例,你可以根据自己的需求进行更进一步的处理和优化。

相关推荐
Chase_______21 分钟前
AI提效指南:Nano Banana 生成精美PPT与漫画
人工智能·powerpoint
雨大王51223 分钟前
汽车产业供应链优化的可行策略及案例分析
人工智能·机器学习
梁辰兴27 分钟前
三星自研GPU剑指AI芯片霸权,2027年能否撼动英伟达?
人工智能·gpu·芯片·电子·ai芯片·三星·梁辰兴
吴佳浩7 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI7 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维8 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术8 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20238 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud8 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云8 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能