第10.4篇 使用预训练的目标检测网络

在PyTorch提供的已经训练好的图像目标检测中,均是R-CNN系列

的网络,并且针对目标检测和人体关键点检测分别提供了容易调用的方

法。针对目标检测的网络,输入图像均要求使用相同的预处理方式,即先将每张图像的像素值预处理到0~1之间,且输人的图像尺寸不是很小即可直接

调用。已经预训练的可供使用的网络模型如表10-2所示。

首先定义每个类别所对应的标签COCO_INSTANCE_CATEGORY_NAMES,程序如下:

上面的程序在可视化图像时,使用ImageDraw.Draw(image)方法,表示要在原始的image图像上相应的位置添加一些元素,draw.rectangle(表示要添加矩形框,draw.text()表示在图像上指定位置添加文本。运行程序后,可得到图10-14所示的目标检测结果。

相关推荐
网安INF10 分钟前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
qq_5260991314 分钟前
图像采集卡与工业相机:机器视觉“双剑合璧”的效能解析
图像处理·数码相机·计算机视觉
l1t1 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb
plusplus1682 小时前
边缘智能实战手册:攻克IoT应用三大挑战的AI战术
人工智能·物联网
果粒橙_LGC2 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
雷达学弱狗2 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
Seeklike3 小时前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
CoovallyAIHub3 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
杨过过儿3 小时前
【Task01】:简介与环境配置(第一章1、2节)
人工智能·自然语言处理
小妖同学学AI3 小时前
deepseek一键生成word和excel并一键下载
人工智能·word·excel·deepseek