回溯法与迭代法详解:如何从手机数字键盘生成字母组合

在这篇文章中,我们将详细介绍如何基于手机数字键盘的映射,给定一个仅包含数字 2-9 的字符串,输出它能够表示的所有字母组合。这是一个经典的回溯算法问题,适合初学者理解和掌握。

问题描述

给定一个数字字符串,比如 digits = "23",手机数字键盘的映射如下:

2 -> "abc"
3 -> "def"
4 -> "ghi"
5 -> "jkl"
6 -> "mno"
7 -> "pqrs"
8 -> "tuv"
9 -> "wxyz"

我们需要找到所有可能的字母组合。举个例子:

"23" -> ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]

17. 电话号码的字母组合 - 力扣(LeetCode)

1. 问题分析

从问题的角度看,这是一个组合问题。手机键盘上的每个数字对应一组字母,我们要找到给定数字的所有字母组合。关键在于如何构建这些组合。我们可以通过回溯法 或者迭代法来解决。

1.1 回溯法的思路

回溯算法是递归算法的一种,适合用来枚举所有可能的结果。在这个问题中,回溯的关键点是从第一个数字开始,遍历所有可能的字母组合,逐步构建字符串,直到所有数字都被处理完毕。

具体步骤如下:

  1. 选择 :我们从 digits 中每个数字开始,找到对应的字母集。
  2. 递归:对于字母集中的每个字母,我们递归地去构建字符串,直到遍历完所有的数字。
  3. 回退:在递归过程中,构建的字符串达到一定长度后,我们会回退(撤销上一步操作),尝试其他的可能性。
1.2 多种解法
  • 回溯法 :利用递归去枚举所有可能的组合。复杂度为 O ( 3 n ) O(3^n) O(3n) 或 O ( 4 n ) O(4^n) O(4n),取决于输入的数字个数。
  • 迭代法:使用队列的方式逐步构造出所有的字母组合。每处理一个数字,都会将当前已有的组合与对应的新字母结合。

接下来我们详细介绍这两种解法。


2. 解法一:回溯法(Backtracking)

2.1 解题思路

回溯算法的基本思路是递归地构建可能的组合,并在递归结束时撤销选择。具体来说,我们会从第一个数字开始,对应的字母集选择一个字母,然后递归处理下一个数字。

回溯的步骤:

  1. 如果已经构建的字符串长度等于 digits 的长度,我们就将它加入结果集。
  2. 否则,继续处理下一个数字。
  3. 每次递归返回时,撤销上一次的选择,尝试下一个字母。
2.2 代码实现
cpp 复制代码
#include <iostream>
#include <vector>
#include <unordered_map>

using namespace std;

class Solution {
public:
    vector<string> ans;  // 存储结果
    string combination = "";  // 当前的字母组合

    void backtrack(const string& digits, unordered_map<char, string>& phone, int idx) {
        if (idx == digits.size()) {  // 当达到数字字符串的长度时
            ans.push_back(combination);  // 将组合加入结果集
            return;
        }
        
        char digit = digits[idx];  // 获取当前数字
        const string& letters = phone[digit];  // 获取当前数字对应的字母集
        
        for (char letter : letters) {  // 遍历字母集中的每个字母
            combination += letter;  // 做出选择
            backtrack(digits, phone, idx + 1);  // 递归处理下一个数字
            combination.pop_back();  // 回溯,撤销选择
        }
    }

    vector<string> letterCombinations(string digits) {
        if (digits.empty()) return {};  // 边界情况处理,空输入返回空数组
        
        // 建立数字到字母的映射
        unordered_map<char, string> phone = {
            {'2', "abc"}, {'3', "def"}, {'4', "ghi"}, {'5', "jkl"},
            {'6', "mno"}, {'7', "pqrs"}, {'8', "tuv"}, {'9', "wxyz"}
        };
        
        // 调用回溯函数
        backtrack(digits, phone, 0);
        
        return ans;  // 返回结果
    }
};
2.3 详细解释
  1. 递归终止条件 :当索引 idx 达到 digits 的长度时,说明我们已经构造了一个完整的字母组合,将其加入结果集。
  2. 递归过程:对于当前数字,找到对应的字母集,遍历字母集中的每一个字母,加入到当前的组合字符串中,然后递归处理下一个数字。
  3. 回溯撤销选择 :在递归返回后,我们调用 combination.pop_back() 撤销上一次递归中加入的字符,回退到上一个状态,从而尝试下一个字母。
2.4 示例模拟过程
  • 输入:digits = "23"
    • 递归过程:
      1. 处理第一个数字 2,对应的字母集是 ['a', 'b', 'c']
      2. 选中字母 'a',递归处理下一个数字 3,对应的字母集是 ['d', 'e', 'f']
      3. 选中字母 'd',完成组合 'ad',将其加入结果集。
      4. 回退到字母 'a',选择下一个字母 'e',构造组合 'ae',继续加入结果集。
      5. 继续这种方式,构造出 'af',然后回退选择字母 'b'
      6. 重复上述过程直到遍历所有字母,得到组合 ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]

3. 解法二:迭代法(使用队列)

3.1 解题思路

另一种方法是利用队列。我们可以使用一个队列来逐步生成组合:

  1. 从数字字符串的第一个数字开始,把对应的字母放入队列。
  2. 对于每一个数字,取出队列中所有的已有组合,然后在每个组合后附加当前数字对应的每一个字母,形成新的组合,再放回队列。
  3. 当处理完所有的数字时,队列中保存的就是所有可能的组合。
3.2 代码实现
cpp 复制代码
#include <iostream>
#include <vector>
#include <unordered_map>
#include <queue>

using namespace std;

class Solution {
public:
    vector<string> letterCombinations(string digits) {
        if (digits.empty()) return {};  // 边界情况处理,空输入返回空数组
        
        // 建立数字到字母的映射
        unordered_map<char, string> phone = {
            {'2', "abc"}, {'3', "def"}, {'4', "ghi"}, {'5', "jkl"},
            {'6', "mno"}, {'7', "pqrs"}, {'8', "tuv"}, {'9', "wxyz"}
        };
        
        queue<string> q;  // 定义一个队列来保存组合
        q.push("");  // 先往队列中放入一个空字符串
        
        // 遍历输入数字字符串中的每个数字
        for (char digit : digits) {
            int n = q.size();  // 记录当前队列的大小
            const string& letters = phone[digit];  // 获取当前数字对应的字母集
            
            for (int i = 0; i < n; i++) {  // 对于当前队列中每个已有组合
                string current = q.front();  // 取出队首元素
                q.pop();  // 移除队首
                
                // 对当前数字的每个字母,将其加到已有组合的后面
                for (char letter : letters) {
                    q.push(current + letter);  // 将新组合放回队列
                }
            }
        }
        
        // 最终队列中的所有元素就是结果
        vector<string> ans;
        while (!q.empty()) {
            ans.push_back(q.front());
            q.pop();
        }
        
        return ans;
    }
};
3.3 示例讲解
  • 输入:digits = "23"
    1. 初始化队列:q = [""]
    2. 处理

第一个数字 2,对应的字母集 ['a', 'b', 'c']。将每个字母加到队列中的每一个已有组合(当前为空字符串 ""),得到队列 q = ["a", "b", "c"]

  1. 处理第二个数字 3,对应的字母集 ['d', 'e', 'f']。将每个字母加到队列中的每一个已有组合,得到 q = ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]

  2. 最终队列中的元素就是结果。


4. 总结

  • 回溯法 :通过递归逐步构建可能的组合,并在递归结束后撤销选择,时间复杂度接近 O ( 3 n ) O(3^n) O(3n) 或 O ( 4 n ) O(4^n) O(4n),取决于数字对应的字母数量。回溯算法的优点是易于实现,适合处理这种组合问题。

  • 迭代法(队列) :通过队列逐步构建组合,时间复杂度也是 O ( 3 n ) O(3^n) O(3n) 或 O ( 4 n ) O(4^n) O(4n)。虽然有时实现起来可能比递归稍微复杂,但它在一些情况下的性能表现会更好。

对于新手来说,回溯法可能是更直观的解法,因为它的思路清晰,非常适合处理类似的组合问题。

相关推荐
网易独家音乐人Mike Zhou1 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
Swift社区5 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman5 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年6 小时前
数据结构 (1)基本概念和术语
数据结构·算法
Dong雨6 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
SoraLuna6 小时前
「Mac玩转仓颉内测版24」基础篇4 - 浮点类型详解
开发语言·算法·macos·cangjie
liujjjiyun7 小时前
小R的随机播放顺序
数据结构·c++·算法
¥ 多多¥7 小时前
c++中mystring运算符重载
开发语言·c++·算法
trueEve8 小时前
SQL,力扣题目1369,获取最近第二次的活动
算法·leetcode·职场和发展
天若有情6738 小时前
c++框架设计展示---提高开发效率!
java·c++·算法