【AIGC】OpenAI 宣布推出Whisper large-v3-turbo 语音转录模型 速度提高了8倍

OpenAI 宣布推出了一个名为 large-v3-turbo(简称 turbo)的新 Whisper 模型。这是 Whisper large-v3 的优化版本,将解码器层数从大型模型的 32 层减少到与 tiny 模型相同的 4 层。此优化版本的开发受到了 Distil-Whisper 的启发,后者表明使用较小的解码器可以显著提升转录速度,同时对准确性的影响较小。

速度比 large-v3 快 8 倍,但质量几乎没有下降!

Whisper large-v3-turbo 主要功能和特点:

  1. 更少的解码器层数
    • 与 Whisper large-v3 相比,large-v3-turbo 只使用了 4 个解码器层,而 large-v3 使用了 32 个解码器层。较少的解码器层数使得模型在保持相对高准确度的同时,显著提高了处理速度。
  2. 优化的速度表现
    • Turbo 模型的语音转录速度比 tiny 模型更快,是 Whisper 系列模型中速度与准确性兼顾的"最佳选择"。通过使用更小的解码器层数,该模型提升了实时转录的能力。
    • 通过减少解码层数和启用 torch.compile,推理速度可提升高达 4.5 倍,进一步提高了模型的效率,非常适合需要低延迟的应用场景。
  3. 多语言支持
    • 支持 99 种语言的语音转录,表现出色,并且与大型数据集兼容,包括 FLEURS 和 Common Voice 数据集,尤其在高质量录音上效果更佳。
  4. 跨语言的高效表现
    • Turbo 模型的跨语言转录表现与 large-v2 相当,但在一些语言(如泰语和粤语)上表现较弱。在一些录音质量较高的数据集(如 FLEURS)上,turbo 模型的表现优于 Common Voice 数据集。
  5. 更快的自动语音识别 (ASR)
    • 结合最新的技术补丁(#2359),turbo 模型在使用 F.scaled_dot_product_attention(缩放点积注意力机制)时,能进一步提升自动语音识别的速度。
  6. 专注于转录任务
    • Turbo 模型专为多语言转录任务微调,不适合翻译任务,因为训练时不包含翻译数据。它在纯语音转录方面的表现更为优异,但翻译任务表现较差。
  7. 使用与集成方便
    • 开发者可以通过简单的 Python 包更新或 Whisper 的命令行工具默认使用 turbo 模型,使得其在实际应用中更易于集成。
相关推荐
再__努力1点几秒前
【68】颜色直方图详解与Python实现
开发语言·图像处理·人工智能·python·算法·计算机视觉
怎么全是重名5 分钟前
DeepLab(V3)
人工智能·深度学习·图像分割
m0_6501082411 分钟前
Vision-Language-Action 模型在自动驾驶中的应用(VLA4AD)
论文阅读·人工智能·自动驾驶·端到端自动驾驶·vla4ad·自动驾驶与多模态大模型交叉
爱笑的眼睛1118 分钟前
文本分类的范式演进:从统计概率到语言模型提示工程
java·人工智能·python·ai
星川皆无恙23 分钟前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱
美狐美颜SDK开放平台28 分钟前
自研还是接入第三方?直播美颜sdk与滤镜功能的技术选型分析
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
weixin_4166600728 分钟前
插件分享:将AI生成的数学公式无损导出为Word文档
人工智能·ai·word·论文·数学公式·deepseek
PM老周31 分钟前
DORA2025:如何用AI提升研发效能(以 ONES MCP Server 为例)
大数据·人工智能
皇族崛起33 分钟前
【众包 + AI智能体】AI境生态巡查平台边防借鉴价值专项调研——以广西边境线治理为例
大数据·人工智能