Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

三十多个开源数据集 | 故障诊断再也不用担心数据集了!

Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行变分模态分解VMD的介绍与数据预处理,最后通过Python实现VMD-CNN-BiLSTM对故障数据的分类。

凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_凯斯西储大学轴承数据集-CSDN博客

1 变分模态分解VMD的Python示例

第一步,Python 中 VMD包的下载安装:

python 复制代码
# 下载
pip install vmdpy

# 导入
from vmdpy import VMD

第二步,导入相关包进行分解

​​​​​​

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from vmdpy import VMD

# -----测试信号及其参数--start-------------
t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 20 * t)
T = len(signal)
fs = 1/T
t = np.arange(1,T+1)/T

# alpha 惩罚系数;带宽限制经验取值为抽样点长度1.5-2.0倍.
# 惩罚系数越小,各IMF分量的带宽越大,过大的带宽会使得某些分量包含其他分量言号;
alpha = 2000

#噪声容限,一般取 0, 即允许重构后的信号与原始信号有差别。
tau = 0 
#模态数量  分解模态(IMF)个数
K = 5

#DC 合成信号若无常量,取值为 0;若含常量,则其取值为 1
# DC 若为0则让第一个IMF为直流分量/趋势向量
DC = 0 
#初始化ω值,当初始化为 1 时,均匀分布产生的随机数
# init 指每个IMF的中心频率进行初始化。当初始化为1时,进行均匀初始化。
init = 1 
#控制误差大小常量,决定精度与迭代次数
tol = 1e-7
# -----测试信号及其参数--end----------

# Apply VMD
# 输出U是各个IMF分量,u_hat是各IMF的频谱,omega为各IMF的中心频率
u, u_hat, omega= VMD(signal, alpha, tau, K, DC, init, tol)
#得到中心频率的数值
print(omega[-1])
# Plot the original signal and decomposed modes
plt.figure(figsize=(15,10))
plt.subplot(K+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")
for num in range(K):
    plt.subplot(K+1, 1, num+2)
    plt.plot(t, u[num,:])
    plt.title("IMF "+str(num+1))

plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 故障VMD分解可视化

第一步, 模态选取

根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。

第二步,故障VMD分解可视化

2.3 故障数据的VMD分解预处理

3 基于VMD-CNN-BiLSTM的轴承故障识别模型

下面基于VMD分解后的轴承故障数据,先通过CNN进行卷积池化操作提取信号的特征,增加维度,缩短序列长度,然后再送入BiLSTM层提取时序特征,实现CNN-BiLSTM信号的分类方法进行讲解:

3.1 定义VMD-CNN-BiLSTM分类网络模型

3.2 设置参数,训练模型

50个epoch,准确率将近97%,用VMD-CNN-BiLSTM网络分类效果显著,CNN-BiLSTM模型能够充分提取轴承故障信号的空间和时序特征,收敛速度快,性能优越,继续调参可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加CNN层数和隐藏层的维度,微调学习率;

  • 调整BiLSTM层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据整理如下:

相关推荐
Learn-Python14 小时前
MongoDB-only方法
python·sql
小途软件15 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚15 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei20070816 小时前
生产者消费者
开发语言·python
清水白石00816 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~16 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
2501_9418779816 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人16 小时前
fastmcp构建mcp server和client
python·ai·mcp
且去填词17 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
rgeshfgreh17 小时前
Python条件与循环实战指南
python