python异常检测 - 随机离群选择Stochastic Outlier Selection (SOS)

python异常检测 - Stochastic Outlier Selection (SOS)

前言

随机离群选择SOS算法全称stochastic outlier selection algorithm. 该算法的作者是jeroen janssens. SOS算法是一种无监督的异常检测算法.

随机离群选择SOS算法原理

随机离群选择SOS算法的输入:

  • 特征矩阵(feature martrix)或者相异度矩阵(dissimilarity matrix)

随机离群选择SOS算法的输出:

  • 一个异常概率值向量(每个点对应一个).

随机离群选择SOS算法的基本思想

  • 一个点和其它所有点的关联度(affinity)都很小的时候,它就是一个异常点。

随机离群选择SOS实现

随机利群选择SOS的的实现原理

将特征矩阵(feature martrix)或者相异度矩阵(dissimilarity matrix)输入给SOS算法,会返回一个异常概率值向量(每个点对应一个)。SOS的思想是:当一个点和其它所有点的关联度(affinity)都很小的时候,它就是一个异常点。

SOS的流程

1.随机抽样:首先,从原始数据集中随机抽样生成多个子集。每个子集包含原始数据集的一部分样本。

2.距离度量:对于每个子集,计算其中每一对样本之间的距离。通常使用的是欧氏距离或其他合适的距离度量。这一步旨在捕捉子集内样本的相对分布情况。

3.离群得分计算: 对于每个样本,计算其到其他样本的平均距离。离群得分越高,表示该样本越可能是离群点。这个过程有助于识别在整个数据集中相对较远的样本。

4.阈值设定: 根据计算得到的离群得分设定一个阈值。样本的离群得分超过该阈值的话,就被认为是离群点。

相异度矩阵D是各样本两两之间的度量距离, 比如欧式距离或汉明距离等。关联度矩阵反映的是 度量距离方差, 如关联度矩阵中密度可视化所示, 点 的密度最大, 方差最小; 的密度最小, 方差最大。而关联概率 矩阵 (binding probability matrix)就是把关联矩阵(affinity matrix)按行归一化得到的, 如图关联矩阵归一化所 示。

关联度矩阵中密度可视化

关联矩阵归一化

得到了binding probability matrix,每个点的异常概率值就用如下的公式计算,当一个点和其它所有点的关联度(affinity)都很小的时候,它就是一个异常点。

代码实现

powershell 复制代码
import pandas as pd
from sksos import SOS
iris = pd.read_csv("http://bit.ly/iris-csv")
X = iris.drop("Name", axis=1).values
detector = SOS()
iris["score"] = detector.predict(X)
iris.sort_values("score", ascending=False).head(10)

参考资料
收藏!14 种Python异常检测方法总结
【异常检测】数据挖掘领域常用异常检测算法总结以及原理解析

相关推荐
fmdpenny32 分钟前
Vue3初学之商品的增,删,改功能
开发语言·javascript·vue.js
通信.萌新39 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu44 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing1 小时前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
等一场春雨1 小时前
Java设计模式 十四 行为型模式 (Behavioral Patterns)
java·开发语言·设计模式
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
萧若岚2 小时前
Elixir语言的Web开发
开发语言·后端·golang
wave_sky2 小时前
解决使用code命令时的bash: code: command not found问题
开发语言·bash
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask