tensorflow手写自动识别数字(0-9)

用python的tensorflow包写了个手写自动识别的py脚本

前提条件

python 复制代码
pip install tensorflow pillow numpy matplotlib
python 复制代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import numpy as np
import tkinter as tk
from PIL import Image, ImageOps, ImageDraw
from tkinter import ttk

# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建卷积神经网络模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译并训练模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_images[..., np.newaxis], train_labels, epochs=5, validation_data=(test_images[..., np.newaxis], test_labels))

# Tkinter UI 界面,手写输入并预测数字
class DigitRecognizerApp:
    def __init__(self, root):
        self.root = root
        self.root.title("Handwritten Digit Recognition")

        # 创建画布用于手写,绑定窗口大小变化时调整画布大小
        self.canvas = tk.Canvas(self.root, bg='white')
        self.canvas.grid(row=0, column=0, pady=2, padx=2, sticky="nsew")
        self.canvas.bind("<B1-Motion>", self.paint)
        self.canvas.bind("<Configure>", self.resize_canvas)

        # 初始图像对象
        self.image = Image.new("L", (200, 200), 255)
        self.draw = ImageDraw.Draw(self.image)

        # 按钮:清除画布
        self.clear_button = tk.Button(self.root, text="Clear", command=self.clear_canvas)
        self.clear_button.grid(row=1, column=0, pady=2, sticky="ew")

        # 按钮:预测数字
        self.predict_button = tk.Button(self.root, text="Predict", command=self.predict_digit)
        self.predict_button.grid(row=2, column=0, pady=2, sticky="ew")

        # 结果显示区
        self.result_label = tk.Label(self.root, text="Prediction: None", font=('Helvetica', 16))
        self.result_label.grid(row=3, column=0, pady=2, sticky="ew")

        # 概率显示区 - 显示最高概率数字和所有概率
        self.prob_frame = tk.Frame(self.root)
        self.prob_frame.grid(row=4, column=0, pady=2, sticky="nsew")
        self.highest_prob_label = tk.Label(self.prob_frame, text="Highest Probability: None", font=('Helvetica', 12))
        self.highest_prob_label.pack(pady=2)
        self.prob_text = tk.Text(self.prob_frame, height=10, font=('Helvetica', 12))
        self.prob_text.pack(fill=tk.BOTH, expand=True)

        # 调整窗口布局
        self.root.grid_rowconfigure(0, weight=1)
        self.root.grid_columnconfigure(0, weight=1)
        self.root.grid_rowconfigure(4, weight=1)  # 使概率显示区域自适应

    def paint(self, event):
        # 在画布上绘制手写输入
        x, y = event.x, event.y
        r = 8  # 手写笔的半径
        self.canvas.create_oval(x-r, y-r, x+r, y+r, fill='black')
        self.draw.ellipse([x-r, y-r, x+r, y+r], fill='black')

    def resize_canvas(self, event):
        # 调整图像大小,保持用户手写的内容
        new_width, new_height = event.width, event.height
        self.image = self.image.resize((new_width, new_height), Image.ANTIALIAS)
        self.draw = ImageDraw.Draw(self.image)

    def clear_canvas(self):
        # 清除画布
        self.canvas.delete("all")
        self.image = Image.new("L", (self.canvas.winfo_width(), self.canvas.winfo_height()), 255)
        self.draw = ImageDraw.Draw(self.image)
        self.result_label.config(text="Prediction: None")
        self.highest_prob_label.config(text="Highest Probability: None")
        self.prob_text.delete(1.0, tk.END)

    def predict_digit(self):
        # 将用户手写的图像处理为模型输入格式
        img = self.image.resize((28, 28))  # 将图像调整为28x28
        img = ImageOps.invert(img)  # 反转颜色,黑底白字
        img = np.array(img).reshape(1, 28, 28, 1) / 255.0  # 标准化

        # 使用模型进行预测
        predictions = model.predict(img)
        predicted_digit = np.argmax(predictions[0])  # 最高概率的数字
        probabilities = predictions[0]  # 每个数字的概率
        highest_prob = probabilities[predicted_digit]  # 获取最高概率

        # 更新UI显示结果
        self.result_label.config(text=f"Prediction: {predicted_digit}")
        self.highest_prob_label.config(text=f"Highest Probability: {predicted_digit} ({highest_prob:.4f})")

        # 显示所有数字的概率
        self.prob_text.delete(1.0, tk.END)
        for i in range(10):
            self.prob_text.insert(tk.END, f"Digit {i}: {probabilities[i]:.4f}\n")

# 启动应用程序
if __name__ == "__main__":
    root = tk.Tk()
    app = DigitRecognizerApp(root)
    root.mainloop()

还有点缺陷就是不能ui界面不能根据画面的放大缩小自动适应

相关推荐
leafff12320 分钟前
深度拆解 Claude 的 Agent 架构:MCP + PTC、Skills 与 Subagents 的三维协同
人工智能·架构
老蒋新思维23 分钟前
创客匠人深度洞察:创始人 IP 打造的非线性增长模型 —— 知识变现的下一个十年红利
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
北京耐用通信29 分钟前
协议转换的‘魔法转换器’!耐达讯自动化Ethernet/IP转Devicenet如何让工业机器人‘听懂’不同咒语?”
网络·人工智能·科技·网络协议·机器人·自动化·信息与通信
计算机学姐31 分钟前
基于Python的商场停车管理系统【2026最新】
开发语言·vue.js·后端·python·mysql·django·flask
ujainu32 分钟前
Flutter + HarmonyOS开发:轻松实现ArkTS页面跳转
人工智能·python·flutter
小猪快跑爱摄影32 分钟前
【AutoCad 2025】【Python】零基础教程(一)——简单示例
开发语言·python
hans汉斯34 分钟前
【人工智能与机器人研究】人工智能算法伦理风险的适应性治理研究——基于浙江实践与欧美经验的整合框架
大数据·人工智能·算法·机器人·数据安全·算法伦理·制度保障
科普瑞传感仪器37 分钟前
航空航天制造升级:机器人高精度力控打磨如何赋能复合材料加工?
java·前端·人工智能·机器人·无人机·制造
coder_pig38 分钟前
2025 复盘 | 穿越AI焦虑周期,进化为 "AI全栈"
人工智能·aigc·ai编程
初九之潜龙勿用1 小时前
在openEuler操作系统基础上实现机器学习开发以及openEuler优势分析
人工智能·机器学习