tensorflow手写自动识别数字(0-9)

用python的tensorflow包写了个手写自动识别的py脚本

前提条件

python 复制代码
pip install tensorflow pillow numpy matplotlib
python 复制代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import numpy as np
import tkinter as tk
from PIL import Image, ImageOps, ImageDraw
from tkinter import ttk

# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建卷积神经网络模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译并训练模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_images[..., np.newaxis], train_labels, epochs=5, validation_data=(test_images[..., np.newaxis], test_labels))

# Tkinter UI 界面,手写输入并预测数字
class DigitRecognizerApp:
    def __init__(self, root):
        self.root = root
        self.root.title("Handwritten Digit Recognition")

        # 创建画布用于手写,绑定窗口大小变化时调整画布大小
        self.canvas = tk.Canvas(self.root, bg='white')
        self.canvas.grid(row=0, column=0, pady=2, padx=2, sticky="nsew")
        self.canvas.bind("<B1-Motion>", self.paint)
        self.canvas.bind("<Configure>", self.resize_canvas)

        # 初始图像对象
        self.image = Image.new("L", (200, 200), 255)
        self.draw = ImageDraw.Draw(self.image)

        # 按钮:清除画布
        self.clear_button = tk.Button(self.root, text="Clear", command=self.clear_canvas)
        self.clear_button.grid(row=1, column=0, pady=2, sticky="ew")

        # 按钮:预测数字
        self.predict_button = tk.Button(self.root, text="Predict", command=self.predict_digit)
        self.predict_button.grid(row=2, column=0, pady=2, sticky="ew")

        # 结果显示区
        self.result_label = tk.Label(self.root, text="Prediction: None", font=('Helvetica', 16))
        self.result_label.grid(row=3, column=0, pady=2, sticky="ew")

        # 概率显示区 - 显示最高概率数字和所有概率
        self.prob_frame = tk.Frame(self.root)
        self.prob_frame.grid(row=4, column=0, pady=2, sticky="nsew")
        self.highest_prob_label = tk.Label(self.prob_frame, text="Highest Probability: None", font=('Helvetica', 12))
        self.highest_prob_label.pack(pady=2)
        self.prob_text = tk.Text(self.prob_frame, height=10, font=('Helvetica', 12))
        self.prob_text.pack(fill=tk.BOTH, expand=True)

        # 调整窗口布局
        self.root.grid_rowconfigure(0, weight=1)
        self.root.grid_columnconfigure(0, weight=1)
        self.root.grid_rowconfigure(4, weight=1)  # 使概率显示区域自适应

    def paint(self, event):
        # 在画布上绘制手写输入
        x, y = event.x, event.y
        r = 8  # 手写笔的半径
        self.canvas.create_oval(x-r, y-r, x+r, y+r, fill='black')
        self.draw.ellipse([x-r, y-r, x+r, y+r], fill='black')

    def resize_canvas(self, event):
        # 调整图像大小,保持用户手写的内容
        new_width, new_height = event.width, event.height
        self.image = self.image.resize((new_width, new_height), Image.ANTIALIAS)
        self.draw = ImageDraw.Draw(self.image)

    def clear_canvas(self):
        # 清除画布
        self.canvas.delete("all")
        self.image = Image.new("L", (self.canvas.winfo_width(), self.canvas.winfo_height()), 255)
        self.draw = ImageDraw.Draw(self.image)
        self.result_label.config(text="Prediction: None")
        self.highest_prob_label.config(text="Highest Probability: None")
        self.prob_text.delete(1.0, tk.END)

    def predict_digit(self):
        # 将用户手写的图像处理为模型输入格式
        img = self.image.resize((28, 28))  # 将图像调整为28x28
        img = ImageOps.invert(img)  # 反转颜色,黑底白字
        img = np.array(img).reshape(1, 28, 28, 1) / 255.0  # 标准化

        # 使用模型进行预测
        predictions = model.predict(img)
        predicted_digit = np.argmax(predictions[0])  # 最高概率的数字
        probabilities = predictions[0]  # 每个数字的概率
        highest_prob = probabilities[predicted_digit]  # 获取最高概率

        # 更新UI显示结果
        self.result_label.config(text=f"Prediction: {predicted_digit}")
        self.highest_prob_label.config(text=f"Highest Probability: {predicted_digit} ({highest_prob:.4f})")

        # 显示所有数字的概率
        self.prob_text.delete(1.0, tk.END)
        for i in range(10):
            self.prob_text.insert(tk.END, f"Digit {i}: {probabilities[i]:.4f}\n")

# 启动应用程序
if __name__ == "__main__":
    root = tk.Tk()
    app = DigitRecognizerApp(root)
    root.mainloop()

还有点缺陷就是不能ui界面不能根据画面的放大缩小自动适应

相关推荐
金井PRATHAMA1 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh1 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
CiLerLinux2 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
青衫客363 小时前
基于 Python 构建的安全 gRPC 服务——TLS、mTLS 与 Casbin 授权实战
python·安全·微服务
-dzk-3 小时前
【3DGS复现】Autodl服务器复现3DGS《简单快速》《一次成功》《新手练习复现必备》
运维·服务器·python·计算机视觉·3d·三维重建·三维
七芒星20234 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits5 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
摩羯座-185690305945 小时前
爬坑 10 年!京东店铺全量商品接口实战开发:从分页优化、SKU 关联到数据完整性闭环
linux·网络·数据库·windows·爬虫·python
ACERT3335 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
韩立学长5 小时前
【开题答辩实录分享】以《基于python的奶茶店分布数据分析与可视化》为例进行答辩实录分享
开发语言·python·数据分析