tensorflow手写自动识别数字(0-9)

用python的tensorflow包写了个手写自动识别的py脚本

前提条件

python 复制代码
pip install tensorflow pillow numpy matplotlib
python 复制代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import numpy as np
import tkinter as tk
from PIL import Image, ImageOps, ImageDraw
from tkinter import ttk

# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建卷积神经网络模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译并训练模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_images[..., np.newaxis], train_labels, epochs=5, validation_data=(test_images[..., np.newaxis], test_labels))

# Tkinter UI 界面,手写输入并预测数字
class DigitRecognizerApp:
    def __init__(self, root):
        self.root = root
        self.root.title("Handwritten Digit Recognition")

        # 创建画布用于手写,绑定窗口大小变化时调整画布大小
        self.canvas = tk.Canvas(self.root, bg='white')
        self.canvas.grid(row=0, column=0, pady=2, padx=2, sticky="nsew")
        self.canvas.bind("<B1-Motion>", self.paint)
        self.canvas.bind("<Configure>", self.resize_canvas)

        # 初始图像对象
        self.image = Image.new("L", (200, 200), 255)
        self.draw = ImageDraw.Draw(self.image)

        # 按钮:清除画布
        self.clear_button = tk.Button(self.root, text="Clear", command=self.clear_canvas)
        self.clear_button.grid(row=1, column=0, pady=2, sticky="ew")

        # 按钮:预测数字
        self.predict_button = tk.Button(self.root, text="Predict", command=self.predict_digit)
        self.predict_button.grid(row=2, column=0, pady=2, sticky="ew")

        # 结果显示区
        self.result_label = tk.Label(self.root, text="Prediction: None", font=('Helvetica', 16))
        self.result_label.grid(row=3, column=0, pady=2, sticky="ew")

        # 概率显示区 - 显示最高概率数字和所有概率
        self.prob_frame = tk.Frame(self.root)
        self.prob_frame.grid(row=4, column=0, pady=2, sticky="nsew")
        self.highest_prob_label = tk.Label(self.prob_frame, text="Highest Probability: None", font=('Helvetica', 12))
        self.highest_prob_label.pack(pady=2)
        self.prob_text = tk.Text(self.prob_frame, height=10, font=('Helvetica', 12))
        self.prob_text.pack(fill=tk.BOTH, expand=True)

        # 调整窗口布局
        self.root.grid_rowconfigure(0, weight=1)
        self.root.grid_columnconfigure(0, weight=1)
        self.root.grid_rowconfigure(4, weight=1)  # 使概率显示区域自适应

    def paint(self, event):
        # 在画布上绘制手写输入
        x, y = event.x, event.y
        r = 8  # 手写笔的半径
        self.canvas.create_oval(x-r, y-r, x+r, y+r, fill='black')
        self.draw.ellipse([x-r, y-r, x+r, y+r], fill='black')

    def resize_canvas(self, event):
        # 调整图像大小,保持用户手写的内容
        new_width, new_height = event.width, event.height
        self.image = self.image.resize((new_width, new_height), Image.ANTIALIAS)
        self.draw = ImageDraw.Draw(self.image)

    def clear_canvas(self):
        # 清除画布
        self.canvas.delete("all")
        self.image = Image.new("L", (self.canvas.winfo_width(), self.canvas.winfo_height()), 255)
        self.draw = ImageDraw.Draw(self.image)
        self.result_label.config(text="Prediction: None")
        self.highest_prob_label.config(text="Highest Probability: None")
        self.prob_text.delete(1.0, tk.END)

    def predict_digit(self):
        # 将用户手写的图像处理为模型输入格式
        img = self.image.resize((28, 28))  # 将图像调整为28x28
        img = ImageOps.invert(img)  # 反转颜色,黑底白字
        img = np.array(img).reshape(1, 28, 28, 1) / 255.0  # 标准化

        # 使用模型进行预测
        predictions = model.predict(img)
        predicted_digit = np.argmax(predictions[0])  # 最高概率的数字
        probabilities = predictions[0]  # 每个数字的概率
        highest_prob = probabilities[predicted_digit]  # 获取最高概率

        # 更新UI显示结果
        self.result_label.config(text=f"Prediction: {predicted_digit}")
        self.highest_prob_label.config(text=f"Highest Probability: {predicted_digit} ({highest_prob:.4f})")

        # 显示所有数字的概率
        self.prob_text.delete(1.0, tk.END)
        for i in range(10):
            self.prob_text.insert(tk.END, f"Digit {i}: {probabilities[i]:.4f}\n")

# 启动应用程序
if __name__ == "__main__":
    root = tk.Tk()
    app = DigitRecognizerApp(root)
    root.mainloop()

还有点缺陷就是不能ui界面不能根据画面的放大缩小自动适应

相关推荐
小张学Python3 分钟前
AI数字人Heygem:口播与唇形同步的福音,无需docker,无需配置环境,一键整合包来了
python·数字人·heygem
跳跳糖炒酸奶7 分钟前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈12 分钟前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon16 分钟前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V17 分钟前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能23 分钟前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能
掘金安东尼26 分钟前
GPT-4.5 被 73% 的人误认为人类,“坏了?!我成替身了!”
人工智能·程序员
步木木34 分钟前
Anaconda和Pycharm的区别,以及如何选择两者
ide·python·pycharm
星始流年35 分钟前
解决PyInstaller打包PySide6+QML应用的资源文件问题
python·llm·pyspider
南玖yy37 分钟前
Python网络爬虫:从入门到实践
爬虫·python