【机器学习】特征降维|低方差过滤|主成分分析PCA|相关系数法|皮尔逊相关系数|斯皮尔曼相关系数

特征降维

特征降维

  • 为什么要进行特征降维?
    • 特征对训练模型非常重要,当用于训练的数据集包涵一些不重要的特征时,可能会导致模型泛化性能不加
      • eg:某些特征的取值较为接近,其包含的信息较少
      • eg:希望特征独立存在对预测产生影响,两个特征同增同减非常相关,不会给模型带来更多的信息
  • 特征降维目的
    • 在某些特定的情况下,降低特征个数
    • 特征降维涉及的知识面比较多,当前阶段常用的方法:
      • 低方差过滤法
      • PAC 主成分分析降维法
      • 相关系数法(皮尔逊相关系数 斯皮尔曼相关系数)

低方差过滤

  • 低方差过滤法: 指的是删除方差低于某一阈值的特征
    • 特征方差小: 特征值的波动范围小 包含的信息少 模型不易学到信息
    • 特征方差大: 特征值的波动范围大 包含的信息多 便于模型学习
  • 低方差过滤API
python 复制代码
# 实例化对象用于删除所有低方差特征
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
variance_obj.fit_transform(X)
	# X.shape : [n_samples,n_features]
# 返回值:训练集差异低于threshold的特征将被删除。
	#默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征
  • 代码实现
python 复制代码
# 1.导入依赖包
from sklearn.feature_selection import VarianceThreshold
import pandas as pd

# 2. 读取数据集
data = pd.read_csv('data/垃圾邮件分类数据.csv')
print(data.shape) # (971, 25734)


# 3. 使用方差过滤法
transformer = VarianceThreshold(threshold=0.1)
data = transformer.fit_transform(data)
print(data.shape) # (971, 1044)
  • 运行结果

主成分分析PCA

  • 主成分分析(Principal Component Analysis,PCA)
    • PCA 通过对数据维度进行压缩,尽可能降低原数据的维度,损失少了信息,在此过程中可能会舍弃原有数据、创造新的变量
  • API
    • sklearn.decomposition.PCA(n_components=None)
      • 将数据分解为较低维数空间
      • n_components: 小数表示保留百分之多少的信息;整数表示减少到多少特征 eg:由20个特征减少到10个
    • mypcaobj.fit_transform(X)
      • 返回值:转换后指定维度的array
  • 代码实现
python 复制代码
# 1.导入依赖包
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# 2. 加载数据集
x, y = load_iris(return_X_y=True)
print(x[:5])


# 3. PCA,保留指定比例的信息
transformer = PCA(n_components=0.95)
x_pca = transformer.fit_transform(x)
print(x_pca[:5])


# 4. PCA,保留指定数量特征
transformer = PCA(n_components=2)
x_pca = transformer.fit_transform(x)
print(x_pca[:5])
  • 运行结果

相关系数法

  • 为什么会使用相关系数?
    • 相关系数:反应特征列之间的密切相关程度的统计指标
    • 常见2个相关系数:皮尔逊相关系数、斯皮尔曼相关系数
    • 相关系数的值介于--1与+1之间,即--1 ≤ r ≤ +1。其性质如下:
      • 当 r > 0 时,表示两变量正相关,r < 0 时,两变量为负相关
      • 当 |r| = 1 时,表示两变量为完全相关,当r = 0时,表示两变量间无相关关系
      • 当 0 < |r| < 1时,表示两变量存在一定程度的相关。
      • 且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
    • 一般可按三级划分:
      • (1) |r| <0.4为低度相关;
      • (2) 0.4≤ |r| <0.7为显著性相关;
      • (3) 0.7 ≤ |r| <1为高度线性相关。
皮尔逊相关系数
  • 举例: 已知广告投入x特征与月均销售额y之间的关系,经过皮尔逊相关系数计算,为高度相关
斯皮尔曼相关系数
  • 举例
  • 代码实现
python 复制代码
# 1.导入依赖包
import pandas as pd
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr
from scipy.stats import spearmanr
from sklearn.datasets import load_iris

# 2.读取数据集(鸢尾花数据集)
data = load_iris()
data = pd.DataFrame(data.data, columns=data.feature_names)

# 3. 皮尔逊相关系数
corr = pearsonr(data['sepal length (cm)'], data['sepal width (cm)'])
print(corr, '皮尔逊相关系数:', corr[0], '不相关性概率:', corr[1])
# (-0.11756978413300204, 0.15189826071144918) 皮尔逊相关系数: -0.11756978413300204 不相关性概率: 0.15189826071144918

# 4. 斯皮尔曼相关系数
corr = spearmanr(data['sepal length (cm)'], data['sepal width (cm)'])
print(corr, '斯皮尔曼相关系数:', corr[0], '不相关性概率:', corr[1])
# SpearmanrResult(correlation=-0.166777658283235, pvalue=0.04136799424884587) 斯皮尔曼相关系数: -0.166777658283235 不相关性概率: 0.04136799424884587
相关推荐
小军军军军军军1 分钟前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
Kenneth風车16 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
诚威_lol_中大努力中24 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金44 分钟前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_1 小时前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin1 小时前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
说私域1 小时前
无人零售及开源 AI 智能名片 S2B2C 商城小程序的深度剖析
人工智能·小程序·零售
Calvin8808281 小时前
Android Studio 的革命性更新:Project Quartz 和 Gemini,开启 AI 开发新时代!
android·人工智能·android studio
Jamence2 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论