文章目录
-
-
- [1. 继承概念及定义:](#1. 继承概念及定义:)
-
- 继承的定义:
- 继承关系和访问限定符:
- [继承基类成员访问方式的变化 (在派生类中访问方式)](#继承基类成员访问方式的变化 (在派生类中访问方式))
- [2. 基类和派生类对象赋值转换](#2. 基类和派生类对象赋值转换)
- [3 .继承中的作用域](#3 .继承中的作用域)
- [4. 派生类的默认成员函数](#4. 派生类的默认成员函数)
- [5. 继承与友元](#5. 继承与友元)
- [6. 继承与静态成员](#6. 继承与静态成员)
- [7. 复杂的菱形继承及菱形虚拟继承](#7. 复杂的菱形继承及菱形虚拟继承)
- [8. 继承的反思与总结](#8. 继承的反思与总结)
- [9. 笔试面试题](#9. 笔试面试题)
-
1. 继承概念及定义:
继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用。
c
class Person
{
public:
void Print()
{
cout << "name:" << _name << endl;
cout << "age:" << _age << endl;
}
protected:
string _name = "peter"; // 姓名
int _age = 18; // 年龄
};
// 继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。这里体现出了
//Student和Teacher复用了Person的成员。下面我们使用监视窗口查看Student和Teacher对象,可
//以看到变量的复用。调用Print可以看到成员函数的复用。
class Student : public Person
{
protected:
int _stuid; // 学号
};
class Teacher : public Person
{
protected:
int _jobid; // 工号
};
int main()
{
Student s;
Teacher t;
s.Print();
t.Print();
return 0;
}
继承的定义:
下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类
继承关系和访问限定符:
继承基类成员访问方式的变化 (在派生类中访问方式)
类成员/继承方 | public继承 | protected继承 | private继承 |
---|---|---|---|
基类的public成员 | 派生类的public成员 | 派生类的protected成员 | 派生类的private成员 |
基类的protected成员 | 派生类的protected成员 | 派生类的protected成员 | 派生类的private成员 |
基类的private成员 | 在派生类中不可见 | 在派生类中不可见 | 在派生类中不可见 |
总结:
- 基类private成员在派生类中无论以什么方式继承都是不可见的,这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
- 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。
- 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected>private。
- 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过最好显示的写出继承方式。
- 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。
2. 基类和派生类对象赋值转换
- 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去。
- 基类对象不能赋值给派生类对象。
- 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的
c
class person {
protected:
string _name;
string _sex;
int _age;
int _id = 1;
public:
void func()
{
cout << _id << endl;
}
};
class student : public person {
public:
void func()
{
cout << _id << endl;
}
protected:
int _id = 2;
};
int main()
{
student sobj;
person pobj = sobj;//子类对象赋值给父类对象
person* ptr = &sobj;//父类的指针
person& rp = sobj;//子类对象赋值给父类引用
//sobj = pobj;//错误,父类对象不能赋值给子类对象
//父类指针可以通过强制类型转换赋值给子类的指针
ptr = &sobj;
student* ps1 = (student*)ptr;// 这种情况转换时虽然可以,但是会存在越界访问的问
题
}
3 .继承中的作用域
- 在继承体系中基类和派生类都有独立的作用域。
- 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,
也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问) - 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
- 注意在实际中在继承体系里面最好不要定义同名的成员。
c
// Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆
class Person
{
protected:
string _name = "小李子"; // 姓名
int _num = 111; // 身份证号
};
class Student : public Person
{
public:
void Print()
{
cout << " 姓名:" << _name << endl;
cout << " 身份证号:" << Person::_num << endl;
cout << " 学号:" << _num << endl;
}
protected:
int _num = 999; // 学号
};
void Test()
{
Student s1;
s1.Print();
};
// B中的fun和A中的fun不是构成重载,因为不是在同一作用域
// B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。
class A
{
public:
void fun()
{
cout << "func()" << endl;
}
};
class B : public A
{
public:
void fun(int i)
{
A::fun();
cout << "func(int i)->" << i << endl;
}
};
void Test()
{
B b;
b.fun(10);
};
4. 派生类的默认成员函数
6个默认成员函数,"默认"的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类
中,这几个成员函数是如何生成的呢?
- 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认
的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。 - 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
- 派生类的operator=必须要调用基类的operator=完成基类的复制。
- 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能
保证派生类对象先清理派生类成员再清理基类成员的顺序。 - 派生类对象初始化先调用基类构造再调派生类构造。
- 派生类对象析构清理先调用派生类析构再调基类的析构。(如果先析构基类后析构子类,父类资源已经清理释放,子类析构函数可能会访问父类资源,存在野指针风险。
- 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同(这个我们后面会讲
解)。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加
virtual的情况下,子类析构函数和父类析构函数构成隐藏关系
c
class person {
public:
//构造函数
person(const char* name = "peter")
:_name(name)
{
cout << "person()" << endl;
}
//拷贝构造
person(const person& p)
:_name(p._name)
{
cout << "person(const person)" << endl;
}
//赋值
person& operator=(const person& p)
{
cout << "person& opertor=(const person& p)" << endl;
if (this != &p)
{
_name = p._name;
}
return *this;
}
//析构
~person()
{
cout << "~person()" << endl;
}
protected:
string _name;
};
class student : public person {
public:
//构造函数
student(const char* name, int num)
:person(name)//调用父类的构造函数
, _id(num)
{
cout << "student()构造函数调用" << endl;
}
//拷贝构造
student(const student& tmp)
:person(tmp)//调用父类的拷贝构造
,_id(tmp._id)
{
cout << "student()拷贝构造函数调用" << endl;
}
//赋值
student& operator=(const student& tmp)
{
cout << "student& operator=(const student& tmp)赋值调用" << endl;
if (this != &tmp)
{
//子类和父类的operator构成隐藏关系,故需要加限制符
//调用父类的operator=
person::operator=(tmp);
_id = tmp._id;
}
return *this;
}
~student()
{
//子类的析构函数会和父类的析构函数构成隐藏关系,故需要加限制域
//由于多态的原因,析构函数会被特殊处理,函数名会被处理destructor()
//为了保证先析构父类后析构子类,父类析构函数会在子类的析构函数后自动调用
person::~person();//错误父类被析构了两次
cout << "~student()" << endl;
}
protected:
int _id;
};
int main()
{
//默认生成构造函数
//派生类的成员:1. 内置类型和自定义类型分别处理
//2. 父类成员:调用父类的构造函数
student s("张三", 1);
//总结:子类默认成员函数规则,和非子类类似
//唯一不同的是,不管是构造初始化/拷贝/析构,多了父类那部分,原则:父类那部分调用父类那部分函数完成。
student s1(s);
return 0;
}
5. 继承与友元
友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员
c
class student;
class person {
public:
friend void func(const person& s, const student& x);
protected:
string _name;
};
class student : public person {
friend void func(const person& s, const student& x);
protected:
int _stuNum;
};
void func(const person& p, const student& s)
{
cout << p._name << endl;
cout << s._stuNum<< endl;
}
int main()
{
person p;
student s;
func(p, s);
return 0;
}
6. 继承与静态成员
基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。无论派生出多少个子
类,都只有一个static成员实例
c
class person {
public:
person()
{
++_num;
}
protected:
string _name;
public:
static int _num;
};
int person::_num = 0;
class student :public person {
protected:
int _stuNum;
};
class other :public student {
protected:
string _seminarCourse;
};
int main()
{
person s1;
person s2;
student s3;
cout << person::_num << endl;
cout << student::_num << endl;
return 0;
}
7. 复杂的菱形继承及菱形虚拟继承
单继承:一个子类只有一个直接父类时称这个继承关系为单继承
多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承
菱形继承:菱形继承是多继承的一种特殊情况。
菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。
在Assistant的对象中Person成员会有两份。
c
class Person
{
public:
string _name; // 姓名
};
class Student : public Person
{
protected:
int _num; //学号
};
class Teacher : public Person
{
protected:
int _id; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected:
string _majorCourse; // 主修课程
};
void Test()
{
// 这样会有二义性无法明确知道访问的是哪一个
Assistant a;
a._name = "peter";
// 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决
a.Student::_name = "xxx";
a.Teacher::_name = "yyy";
}
虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。
c
class Person
{
public:
string _name; // 姓名
};
class Student : virtual public Person
{
protected:
int _num; //学号
};
class Teacher : virtual public Person
{
protected:
int _id; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected:
string _majorCourse; // 主修课程
};
void Test()
{
Assistant a;
a._name = "peter";
}
虚拟继承解决数据冗余和二义性的原理
为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成 员的模型。
c
class A
{
public:
int _a;
};
// class B : public A
class B : virtual public A
{
public:
int _b;
};
// class C : public A
class C : virtual public A
{
public:
int _c;
};
class D : public B, public C
{
public:
int _d;
};
int main()
{
D d;
d.B::_a = 1;
d.C::_a = 2;
d._b = 3;
d._c = 4;
d._d = 5;
return 0;
}
下图是菱形继承的内存对象成员模型:这里可以看到数据冗余
下图是菱形虚拟继承的内存对象成员模型:这里可以分析出D对象中将A放到的了对象组成的最下面,这个A同时属于B和C,那么B和C如何去找到公共的A呢?这里是通过了B和C的两个指针,指向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量可以找到下面的A
c
// 有人会有疑问为什么D中B和C部分要去找属于自己的A?那么大家看看当下面的赋值发生时,d是
不是要去找出B/C成员中的A才能赋值过去?
D d;
B b = d;
C c = d;
8. 继承的反思与总结
- 很多人说C++语法复杂,其实多继承就是一个体现。有了多继承,就存在菱形继承,有了菱
形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设
计出菱形继承。否则在复杂度及性能上都有问题。 - 多继承可以认为是C++的缺陷之一,很多后来的OO语言都没有多继承,如Java。
- 继承和组合
:::info
- public继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。
-
- 组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象。
- 3.优先使用对象组合,而不是类继承 。
- 继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称
为白箱复用(white-box reuse)。术语"白箱"是相对可视性而言:在继承方式中,基类的
内部细节对子类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很
大的影响。派生类和基类间的依赖关系很强,耦合度高。 - 对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象
来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复
用(black-box reuse),因为对象的内部细节是不可见的。对象只以"黑箱"的形式出现。
组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被
封装。 - 实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有
些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用
继承,可以用组合,就用组合。
:::
9. 笔试面试题
什么是菱形继承?菱形继承的问题是什么?
菱形继承是指一个派生类中同时继承两个直接或间接的基类,且这两个基类又同时继承同一个基类。
问题:1. 数据冗余(由于派生类继承了两个基类B1和B2,这两个基类都可能包含从基类A继承来自相同的数 据成员,在派生类C中这些相同的数据成员会被重复继承,导致数据的冗余和内存的浪费。
二义性:当派生类C试图访问从基类A继承的某个成员时,由于该成员在B1 和B2中都可能有,编译器无法确 定C访问的是B1 中的成员还是B2中的成员,这种不确定性会导致编译错误。
什么是菱形虚拟继承?如何解决数据冗余和二义性的?
虚拟继承:虚继承是一种特殊的继承方式,在虚继承中,相同的基类会 被标记为虚基类,这样在派生类中只会保存一份虚基类的数据成员,从而避免的数据的冗余。
通过虚继承,派生类只确保继承一次共同的基类(虚基类),从而解决数据的冗余和二义性问题,在虚继承中,编译器会为基类和派生类之间创建虚基表,并通过虚基表指针的偏移,来找到对应的变量地址,达到访问同一块空间的目的。
继承和组合的区别?什么时候用继承?什么时候用组合?
关系类型:
继承体现了"is-a"关系,即子类是父类的一种特殊形式。而组合则体现了"has-a"关系,即一个类是另一个类的成员或组成部分。
复用方式:
在继承中,子类可以访问和调用父类的所有属性和方法,这被称为"白盒复用",因为子类可以看到父类的实现细节。而在组合中,整体类通过持有部分类的对象来实现复用,这被称为"黑盒复用",因为整体类不需要关心部分类的实现细节。
关系确定时间:
继承关系在编译时刻静态定义,即子类和父类的关系在编译后就已经确定了。而组合关系是在运行时刻动态确定的,整体类在运行时才会知道自己将持有哪个部分类的对象。
扩展性和灵活性:
继承在扩展方面相对有限,因为子类需要继承父类的所有属性和方法,这可能导致子类变得复杂和庞大。而组合则更加灵活和广泛,整体类可以通过选择不同的部分类来实现不同的功能。
继承的适用场景
类之间存在明确的"is-a"关系:当子类可以自然地被视为父类的一种特殊形式时,可以使用继承。例如,狗是动物的一种,因此Dog类可以继承Animal类。
子类需要重用父类的属性和方法:如果子类需要频繁地使用父类的属性和方法,并且这些属性和方法对于子类来说是必要的,那么继承是一个很好的选择。
组合的适用场景
类之间存在"has-a"关系:当一个类是另一个类的成员或组成部分时,应该使用组合。例如,汽车由引擎、轮胎等部分组成,因此Car类可以包含Engine类和Tire类的对象。
需要保持类的封装性和独立性:组合有助于保持每个类的封装性和独立性,因为整体类不需要关心部分类的实现细节。这有助于降低系统的复杂性和耦合度。
需要实现灵活的组合和扩展:组合允许在运行时动态地选择和组合不同的部分类,从而实现更加灵活和可扩展的系统。例如,在软件设计中,可以使用组合来实现插件系统或模块化架构。
(全文完)