FunASR:阿里巴巴开源的语音识别工具包,提供预训练模型与详细教程,一键部署多场景应用.

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信订阅号|搜一搜:蚝油菜花

🚀 快速阅读

  1. FunASR 是由阿里巴巴开源的语音识别工具包,支持多种功能,包括语音识别、语音活动检测、标点恢复、说话人验证等。
  2. FunASR 提供了预训练模型和易于使用的接口,支持快速部署,满足不同场景的应用需求。
  3. 本文将介绍 FunASR 的主要功能、技术原理,并提供运行示例和安装教程。

正文(附运行示例)

FunASR 是什么

FunASR 是由阿里巴巴达摩院开源的语音识别工具包,旨在帮助研究人员和开发者更高效地进行语音识别模型的研究和生产。它支持多种功能,如语音识别(ASR)、语音活动检测(VAD)、标点恢复、说话人验证和多人对话语音识别等。FunASR 提供了便捷的脚本和教程,支持预训练模型的推理与微调,使用户能够快速部署语音识别服务。

FunASR 的主要功能

  • 语音识别(ASR):将语音信号转换为文本信息。
  • 语音活动检测(VAD):识别语音信号中的有效语音部分,过滤掉静音或背景噪音。
  • 标点恢复:在语音识别结果中自动添加标点符号,提高文本的可读性。
  • 说话人验证:识别并验证说话人的身份。
  • 说话人分离:在多人对话中区分不同说话人的声音。
  • 多说话人 ASR:处理多人同时说话的场景,识别和区分每个人的语音。

如何运行 FunASR

安装教程

确保已安装以下依赖环境:

shell 复制代码
python>=3.8
torch>=1.13
torchaudio

使用 pip 安装:

shell 复制代码
pip3 install -U funasr

或者从源代码安装:

shell 复制代码
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip3 install -e ./

如果需要使用工业预训练模型,安装 modelscope 与 huggingface_hub(可选):

shell 复制代码
pip3 install -U modelscope huggingface huggingface_hub

运行示例

非实时语音识别

使用 Paraformer 模型进行语音识别:

python 复制代码
from funasr import AutoModel

model = AutoModel(model="paraformer-zh", vad_model="fsmn-vad", punc_model="ct-punc")
res = model.generate(input=f"{model.model_path}/example/asr_example.wav", batch_size_s=300, hotword='魔搭')
print(res)
实时语音识别

使用 Paraformer 模型进行实时语音识别:

python 复制代码
from funasr import AutoModel

chunk_size = [0, 10, 5]  # 600ms
encoder_chunk_look_back = 4
decoder_chunk_look_back = 1

model = AutoModel(model="paraformer-zh-streaming")

import soundfile
import os

wav_file = os.path.join(model.model_path, "example/asr_example.wav")
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = chunk_size[1] * 960  # 600ms

cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
    speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
    is_final = i == total_chunk_num - 1
    res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
    print(res)

语音端点检测(VAD)示例

使用 fsmn-vad 模型进行语音端点检测:

python 复制代码
from funasr import AutoModel

model = AutoModel(model="fsmn-vad")

wav_file = f"{model.model_path}/example/vad_example.wav"
res = model.generate(input=wav_file)
print(res)

VAD 模型将返回音频中有效语音段的起始和结束时间,格式如下:

json 复制代码
[[beg1, end1], [beg2, end2], ..., [begN, endN]]

其中 begNendN 以毫秒为单位。

标点恢复示例

使用 ct-punc 模型进行标点恢复:

python 复制代码
from funasr import AutoModel

model = AutoModel(model="ct-punc")

res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
print(res)

该模型会自动在转录文本中添加合适的标点符号,提升文本的可读性。

时间戳预测示例

使用 fa-zh 模型进行时间戳预测:

python 复制代码
from funasr import AutoModel

model = AutoModel(model="fa-zh")

wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
print(res)

该模型将为输入的音频和文本生成时间戳信息。

情感识别示例

使用 emotion2vec_plus_large 模型进行情感识别:

python 复制代码
from funasr import AutoModel

model = AutoModel(model="emotion2vec_plus_large")

wav_file = f"{model.model_path}/example/test.wav"

res = model.generate(wav_file, output_dir="./outputs", granularity="utterance", extract_embedding=False)
print(res)

该模型将返回音频中情感类别的预测结果,如 "生气/angry","开心/happy","中立/neutral","难过/sad"。

资源


❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信订阅号|搜一搜:蚝油菜花

相关推荐
云卓SKYDROID8 分钟前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
云卓SKYDROID10 分钟前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
麻雀无能为力1 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人1 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法1 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾1 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor
时序数据说1 小时前
时序数据库IoTDB用户自定义函数(UDF)使用指南
大数据·数据库·物联网·开源·时序数据库·iotdb
东临碣石821 小时前
【AI论文】数学推理能否提升大型语言模型(LLM)的通用能力?——探究大型语言模型推理能力的可迁移性
人工智能·语言模型·自然语言处理
未来智慧谷2 小时前
微软医疗AI诊断系统发布 多智能体协作实现疑难病例分析
人工智能·microsoft·医疗ai
野生技术架构师2 小时前
简述MCP的原理-AI时代的USB接口
人工智能·microsoft