中英混合的语音识别XPhoneBERT 监督的音频到音素的编码器结合 f0 特征LID

完整项目包获取点击文末名片

完成一个 Code-Switching(中英混合)的语音识别系统,整个流程如下思路进行:

  1. (Step 1) 训练音频到音素的编码器(Audio → Phoneme Encoder)
  • 你已经完成了此部分。
  • 核心思路是利用对比学习(NT-Xent Loss),将你自定义的 "音频到音素" 编码器输出的向量,与 XPhoneBERT 对文本产生的音素向量对齐,形成一个共享或可对齐的表示空间。
  • 这样,模型学会了把音频的特征映射到一个接近 XPhoneBERT 的音素向量空间。
  1. (Step 2) 用 f0 特征训练一个字符级的语言识别 (LID, Language ID) 模型
  • 目标是判断出每个字符(或者更细粒度可以是每个音素/词)属于哪种语言(如 "zh" / "en" / "num")。
  • 由于中英文在声调、语速、F0 高度等方面有差异,可用 f0 作为强特征;再结合简单的卷积或 Transformer,对 f0 序列进行分类/序列标注。
  • 这一步的重点是:需要在输入端对音频进行 F0 提取,并且在输出端做一个"字符级"的多类分类(如果需要更精细可以做音素级/帧级)。
  • 训练好一个 LID 模型后,你就可以在推理时,对于一段音频的每个字符/音素,预测它最可能属于哪一种语言。
相关推荐
It's now1 天前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R1 天前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜1 天前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI1 天前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志1 天前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊1 天前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great1 天前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss1 天前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
yzx9910131 天前
人工智能大模型新浪潮:五大突破性工具深度解析
人工智能