中英混合的语音识别XPhoneBERT 监督的音频到音素的编码器结合 f0 特征LID

完整项目包获取点击文末名片

完成一个 Code-Switching(中英混合)的语音识别系统,整个流程如下思路进行:

  1. (Step 1) 训练音频到音素的编码器(Audio → Phoneme Encoder)
  • 你已经完成了此部分。
  • 核心思路是利用对比学习(NT-Xent Loss),将你自定义的 "音频到音素" 编码器输出的向量,与 XPhoneBERT 对文本产生的音素向量对齐,形成一个共享或可对齐的表示空间。
  • 这样,模型学会了把音频的特征映射到一个接近 XPhoneBERT 的音素向量空间。
  1. (Step 2) 用 f0 特征训练一个字符级的语言识别 (LID, Language ID) 模型
  • 目标是判断出每个字符(或者更细粒度可以是每个音素/词)属于哪种语言(如 "zh" / "en" / "num")。
  • 由于中英文在声调、语速、F0 高度等方面有差异,可用 f0 作为强特征;再结合简单的卷积或 Transformer,对 f0 序列进行分类/序列标注。
  • 这一步的重点是:需要在输入端对音频进行 F0 提取,并且在输出端做一个"字符级"的多类分类(如果需要更精细可以做音素级/帧级)。
  • 训练好一个 LID 模型后,你就可以在推理时,对于一段音频的每个字符/音素,预测它最可能属于哪一种语言。
相关推荐
深圳佛手2 小时前
AI 编程工具Claude Code 介绍
人工智能·python·机器学习·langchain
沃达德软件3 小时前
智能识别车辆驾驶人特征
人工智能·目标检测·计算机视觉·目标跟踪·视觉检测
金融小师妹3 小时前
多因子量化模型预警:美元强势因子压制金价失守4000关口,ADP数据能否重构黄金趋势?
人工智能·深度学习·1024程序员节
BJ_Bonree3 小时前
圆桌论坛精华实录 | AI是重构运维逻辑的颠覆性革命?博睿数据与行业大咖亲授“AI+可观测性”的破局之道
运维·人工智能·重构
终端域名3 小时前
从 Grok 4 多智能体协同到 RAG 范式革命:2025 年 AI 工作流的技术重构生成
人工智能·重构
Dfreedom.3 小时前
卷积神经网络(CNN)全面解析
人工智能·神经网络·cnn·卷积神经网络
zl_vslam3 小时前
SLAM中的非线性优-3D图优化之轴角在Opencv-PNP中的应用(一)
前端·人工智能·算法·计算机视觉·slam se2 非线性优化
koo3644 小时前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
lzjava20244 小时前
Spring AI使用知识库增强对话功能
人工智能·python·spring