中英混合的语音识别XPhoneBERT 监督的音频到音素的编码器结合 f0 特征LID

完整项目包获取点击文末名片

完成一个 Code-Switching(中英混合)的语音识别系统,整个流程如下思路进行:

  1. (Step 1) 训练音频到音素的编码器(Audio → Phoneme Encoder)
  • 你已经完成了此部分。
  • 核心思路是利用对比学习(NT-Xent Loss),将你自定义的 "音频到音素" 编码器输出的向量,与 XPhoneBERT 对文本产生的音素向量对齐,形成一个共享或可对齐的表示空间。
  • 这样,模型学会了把音频的特征映射到一个接近 XPhoneBERT 的音素向量空间。
  1. (Step 2) 用 f0 特征训练一个字符级的语言识别 (LID, Language ID) 模型
  • 目标是判断出每个字符(或者更细粒度可以是每个音素/词)属于哪种语言(如 "zh" / "en" / "num")。
  • 由于中英文在声调、语速、F0 高度等方面有差异,可用 f0 作为强特征;再结合简单的卷积或 Transformer,对 f0 序列进行分类/序列标注。
  • 这一步的重点是:需要在输入端对音频进行 F0 提取,并且在输出端做一个"字符级"的多类分类(如果需要更精细可以做音素级/帧级)。
  • 训练好一个 LID 模型后,你就可以在推理时,对于一段音频的每个字符/音素,预测它最可能属于哪一种语言。
相关推荐
闲看云起20 小时前
大语言模型(LLM)入门全解
人工智能·语言模型·自然语言处理
点云侠20 小时前
OpenCV——二值图赋色
人工智能·opencv·计算机视觉
IT_陈寒20 小时前
Vue3性能优化:5个被低估的Composition API技巧让我打包体积减少了40% 🚀
前端·人工智能·后端
火山引擎开发者社区20 小时前
MCP 安全“体检” | AI 驱动的 MCP 安全扫描系统
人工智能·安全
jndingxin20 小时前
算法面试(5)------NMS(非极大值抑制)原理 Soft-NMS、DIoU-NMS 是什么?
人工智能·算法·目标跟踪
cfc124357063120 小时前
bazel编译
人工智能·机器学习
create1720 小时前
IntelliJ IDEA 等软件如何与 AI 编程工具(Cursor、Windsurf、Qoder等)实现互相跳转
java·ide·人工智能·intellij-idea
兔兔爱学习兔兔爱学习21 小时前
大模型之bert变种
人工智能·深度学习·bert
DuHz21 小时前
Phi-3 技术报告:手机本地运行的高能力语言模型——论文阅读
论文阅读·人工智能·语言模型·自然语言处理·智能手机
科技峰行者21 小时前
阿里云无影发布首个Agentic Computer形态的个人计算产品
人工智能·阿里云·ai·agent