PyTorch 深度学习虚拟环境安装与配置 GPU 版

什么是虚拟环境?

在 Anaconda 中,虚拟环境允许你为不同的项目创建隔离的 Python 环境,这样可以避免不同项目之间的依赖冲突。

使用虚拟环境是一个很好的实践,特别是当你在开发多个项目,或者需要不同版本的库时。这样可以确保项目的依赖清晰,并且易于管理。

安装虚拟环境

查看所有虚拟环境

复制代码
conda env list

创建一个虚拟环境

利用 conda create 指令 创建新的虚拟环境(注意:虚拟环境的名字取得一定要有意义)

复制代码
conda create --n 虚拟环境名字 python=版本

删除虚拟环境:

复制代码
conda remove --n 虚拟环境名字 --all

激活虚拟环境

复制代码
conda activate 虚拟环境名字

安装Pytorch

在上一步创建的虚拟环境中安装PyTorch(安装PyTorch,需要安装pytorch, torchvision,

torchaudio三个包)

进入到pytorch的官网:

Start Locally | PyTorch Start Locallyhttps://pytorch.org/get-started/locally/选择对应的参数后,复制下面的指令到命令行运行

验证安装:

1. 激活对应的虚拟环境(你安装Pytorch的虚拟环境)conda activate 虚拟环境名
2. 输入conda list,看有没有pytorch或者torch
3. 输入python
4. 输入 import torch
5. 输入 torch.cuda.is_available()
6. 如果显示True,就说明我们这个PyTorch安装成功了

安装完成后,你可以在 Python 中验证 PyTorch 是否安装成功:

复制代码
import torch
print(torch.__version__)

给下载的项目设置合适的虚拟环境

  1. 利用PyCharm打开项目:File->Open

  2. 配置对应的虚拟环境:File->Setting->Project Interpreter->Python解释器,然后选择你在命令行创建的对应的虚拟环境

  1. 直接运行代码,右键->run

  2. 如果提示某些包没有发现,大家可以用Conda/pip install 包名(注:如果安装错误,利用搜索引擎找找原因 -- 包名不对,通道不对,或者其他原因)

  3. 可选-最好把requirements.txt文件的内容当作参考。

有选择性的使用 :(1.打开命令行进入到项目文件的位置,命令:cd+项目文件路径

2.输入指令:pip install -r requirements.txt即可,就会自动安装)

相关推荐
JY190641068 小时前
从点云到模型,徕卡RTC360如何搞定铝单板测量?
深度学习
IT_陈寒9 小时前
5个Java 21新特性实战技巧,让你的代码性能飙升200%!
前端·人工智能·后端
dlraba8029 小时前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智9 小时前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体
szxinmai主板定制专家11 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan12 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交12 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc15 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen15 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室16 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文