PyTorch 深度学习虚拟环境安装与配置 GPU 版

什么是虚拟环境?

在 Anaconda 中,虚拟环境允许你为不同的项目创建隔离的 Python 环境,这样可以避免不同项目之间的依赖冲突。

使用虚拟环境是一个很好的实践,特别是当你在开发多个项目,或者需要不同版本的库时。这样可以确保项目的依赖清晰,并且易于管理。

安装虚拟环境

查看所有虚拟环境

复制代码
conda env list

创建一个虚拟环境

利用 conda create 指令 创建新的虚拟环境(注意:虚拟环境的名字取得一定要有意义)

复制代码
conda create --n 虚拟环境名字 python=版本

删除虚拟环境:

复制代码
conda remove --n 虚拟环境名字 --all

激活虚拟环境

复制代码
conda activate 虚拟环境名字

安装Pytorch

在上一步创建的虚拟环境中安装PyTorch(安装PyTorch,需要安装pytorch, torchvision,

torchaudio三个包)

进入到pytorch的官网:

Start Locally | PyTorch Start Locallyhttps://pytorch.org/get-started/locally/选择对应的参数后,复制下面的指令到命令行运行

验证安装:

1. 激活对应的虚拟环境(你安装Pytorch的虚拟环境)conda activate 虚拟环境名
2. 输入conda list,看有没有pytorch或者torch
3. 输入python
4. 输入 import torch
5. 输入 torch.cuda.is_available()
6. 如果显示True,就说明我们这个PyTorch安装成功了

安装完成后,你可以在 Python 中验证 PyTorch 是否安装成功:

复制代码
import torch
print(torch.__version__)

给下载的项目设置合适的虚拟环境

  1. 利用PyCharm打开项目:File->Open

  2. 配置对应的虚拟环境:File->Setting->Project Interpreter->Python解释器,然后选择你在命令行创建的对应的虚拟环境

  1. 直接运行代码,右键->run

  2. 如果提示某些包没有发现,大家可以用Conda/pip install 包名(注:如果安装错误,利用搜索引擎找找原因 -- 包名不对,通道不对,或者其他原因)

  3. 可选-最好把requirements.txt文件的内容当作参考。

有选择性的使用 :(1.打开命令行进入到项目文件的位置,命令:cd+项目文件路径

2.输入指令:pip install -r requirements.txt即可,就会自动安装)

相关推荐
星期天要睡觉几秒前
计算机视觉(opencv)——基于模板匹配的身份证号识别系统
人工智能·opencv·计算机视觉
东方佑6 分钟前
打破常规:“无注意力”神经网络为何依然有效?
人工智能·深度学习·神经网络
Mendix13 分钟前
使用 Altair RapidMiner 将机器学习引入您的 Mendix 应用程序
人工智能·机器学习
Francek Chen30 分钟前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
九章云极AladdinEdu34 分钟前
AI集群全链路监控:从GPU微架构指标到业务Metric关联
人工智能·pytorch·深度学习·架构·开源·gpu算力
惯导马工37 分钟前
【论文导读】IDOL: Inertial Deep Orientation-Estimation and Localization
深度学习·算法
九章云极AladdinEdu42 分钟前
Kubernetes设备插件开发实战:实现GPU拓扑感知调度
人工智能·机器学习·云原生·容器·kubernetes·迁移学习·gpu算力
蒋星熠44 分钟前
深入 Kubernetes:从零到生产的工程实践与原理洞察
人工智能·spring boot·微服务·云原生·容器·架构·kubernetes
爱学习的茄子44 分钟前
Function Call:让AI从文本生成走向智能交互的技术革命
前端·深度学习·openai
aneasystone本尊1 小时前
学习 Chat2Graph 的多智能体协作机制
人工智能