PyTorch 深度学习虚拟环境安装与配置 GPU 版

什么是虚拟环境?

在 Anaconda 中,虚拟环境允许你为不同的项目创建隔离的 Python 环境,这样可以避免不同项目之间的依赖冲突。

使用虚拟环境是一个很好的实践,特别是当你在开发多个项目,或者需要不同版本的库时。这样可以确保项目的依赖清晰,并且易于管理。

安装虚拟环境

查看所有虚拟环境

复制代码
conda env list

创建一个虚拟环境

利用 conda create 指令 创建新的虚拟环境(注意:虚拟环境的名字取得一定要有意义)

复制代码
conda create --n 虚拟环境名字 python=版本

删除虚拟环境:

复制代码
conda remove --n 虚拟环境名字 --all

激活虚拟环境

复制代码
conda activate 虚拟环境名字

安装Pytorch

在上一步创建的虚拟环境中安装PyTorch(安装PyTorch,需要安装pytorch, torchvision,

torchaudio三个包)

进入到pytorch的官网:

Start Locally | PyTorch Start Locallyhttps://pytorch.org/get-started/locally/选择对应的参数后,复制下面的指令到命令行运行

验证安装:

1. 激活对应的虚拟环境(你安装Pytorch的虚拟环境)conda activate 虚拟环境名
2. 输入conda list,看有没有pytorch或者torch
3. 输入python
4. 输入 import torch
5. 输入 torch.cuda.is_available()
6. 如果显示True,就说明我们这个PyTorch安装成功了

安装完成后,你可以在 Python 中验证 PyTorch 是否安装成功:

复制代码
import torch
print(torch.__version__)

给下载的项目设置合适的虚拟环境

  1. 利用PyCharm打开项目:File->Open

  2. 配置对应的虚拟环境:File->Setting->Project Interpreter->Python解释器,然后选择你在命令行创建的对应的虚拟环境

  1. 直接运行代码,右键->run

  2. 如果提示某些包没有发现,大家可以用Conda/pip install 包名(注:如果安装错误,利用搜索引擎找找原因 -- 包名不对,通道不对,或者其他原因)

  3. 可选-最好把requirements.txt文件的内容当作参考。

有选择性的使用 :(1.打开命令行进入到项目文件的位置,命令:cd+项目文件路径

2.输入指令:pip install -r requirements.txt即可,就会自动安装)

相关推荐
DDDDDouble3 分钟前
<二>Sping-AI alibaba 入门-记忆聊天及持久化
java·人工智能
PyAIExplorer4 分钟前
图像处理中的插值方法:原理与实践
图像处理·人工智能
狗头大军之江苏分军14 分钟前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
Mr.Winter`15 分钟前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
CoovallyAIHub1 小时前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉
机器之心1 小时前
刚刚,苹果基础模型团队负责人庞若鸣被Meta挖走!加入超级智能团队、年薪千万美元
人工智能
G.E.N.2 小时前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
西西弗Sisyphus2 小时前
如果让计算机理解人类语言- Word2Vec(Word to Vector,2013)
人工智能·word·word2vec
前端双越老师3 小时前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent