PyTorch 深度学习虚拟环境安装与配置 GPU 版

什么是虚拟环境?

在 Anaconda 中,虚拟环境允许你为不同的项目创建隔离的 Python 环境,这样可以避免不同项目之间的依赖冲突。

使用虚拟环境是一个很好的实践,特别是当你在开发多个项目,或者需要不同版本的库时。这样可以确保项目的依赖清晰,并且易于管理。

安装虚拟环境

查看所有虚拟环境

复制代码
conda env list

创建一个虚拟环境

利用 conda create 指令 创建新的虚拟环境(注意:虚拟环境的名字取得一定要有意义)

复制代码
conda create --n 虚拟环境名字 python=版本

删除虚拟环境:

复制代码
conda remove --n 虚拟环境名字 --all

激活虚拟环境

复制代码
conda activate 虚拟环境名字

安装Pytorch

在上一步创建的虚拟环境中安装PyTorch(安装PyTorch,需要安装pytorch, torchvision,

torchaudio三个包)

进入到pytorch的官网:

Start Locally | PyTorch Start Locallyhttps://pytorch.org/get-started/locally/选择对应的参数后,复制下面的指令到命令行运行

验证安装:

1. 激活对应的虚拟环境(你安装Pytorch的虚拟环境)conda activate 虚拟环境名
2. 输入conda list,看有没有pytorch或者torch
3. 输入python
4. 输入 import torch
5. 输入 torch.cuda.is_available()
6. 如果显示True,就说明我们这个PyTorch安装成功了

安装完成后,你可以在 Python 中验证 PyTorch 是否安装成功:

复制代码
import torch
print(torch.__version__)

给下载的项目设置合适的虚拟环境

  1. 利用PyCharm打开项目:File->Open

  2. 配置对应的虚拟环境:File->Setting->Project Interpreter->Python解释器,然后选择你在命令行创建的对应的虚拟环境

  1. 直接运行代码,右键->run

  2. 如果提示某些包没有发现,大家可以用Conda/pip install 包名(注:如果安装错误,利用搜索引擎找找原因 -- 包名不对,通道不对,或者其他原因)

  3. 可选-最好把requirements.txt文件的内容当作参考。

有选择性的使用 :(1.打开命令行进入到项目文件的位置,命令:cd+项目文件路径

2.输入指令:pip install -r requirements.txt即可,就会自动安装)

相关推荐
Shawn_Shawn4 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like6 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a6 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
Forrit6 小时前
ptyorch安装
pytorch
腾讯云开发者7 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗7 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper8 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_8 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信8 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann