线性层(全连接层)pytorch

**前置知识:

1、线性层和非线性激活函数:

组合使用:通常,线性层后面会接一个非线性激活函数。这样,网络先做一次简单的转换(线性),然后用激活函数(非线性)添加一些复杂性。

(即 output = activation(linear(input)) )

2、

  • 线性层:执行线性变换。
  • 全连接层:是一种特殊的线性层,所有输入节点与所有输出节点相连。

在实践中,两者常常被视作同义词。

3、linear_layer = nn.Linear(4, 2)

  • 输入特征数量:in_features (int) -- size of each input sample

  • 输出特征数量:out_features (int) -- size of each output sample

  • 偏置:bias (bool) -- If set to False, the layer will not learn an additive bias. Default: True

(默认True,自动学习并添加偏置参数)

4、

python 复制代码
import torch
from torch import nn

# 创建一个线性层,输入特征为 4,输出特征为 2
linear_layer = nn.Linear(4, 2)

# 创建一个示例输入,batch_size 为 3
input_tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                              [5.0, 6.0, 7.0, 8.0],
                              [9.0, 10.0, 11.0, 12.0]])

# 前向传播
output_tensor = linear_layer(input_tensor)

# 打印输出
print("Output Tensor:")
print(output_tensor)

#tensor([[ 1.3422, -1.4755],
#        [ 2.4565, -2.6873],
#        [ 3.5708, -3.8991]], grad_fn=<AddmmBackward0>)

这里,input_tensor形状为(3,4),意味着有3个样本(batch_size),每个样本有4个特征

(输入张量的每一列通常代表一个特征)

output_tensor形状为(3,4),意味着还是3个样本,但是特征数变成了2

5、具体如何计算,将 4 个输入特征转换为 2 个输出特征:

经过这样的计算,输入的 4 个特征被转换为 2 个特征,得到的输出张量将是:

output = [[3.1, 7.2], # 第一个样本的输出

[...], # 第二个样本的输出

[...]] # 第三个样本的输出

6、关于权重和偏置:

在 PyTorch 中,线性层的权重矩阵 W 和偏置 b 是在模型创建时自动初始化的。

这些参数的具体值是在模型训练之前随机生成的,通常使用某种分布(如均匀分布或正态分布)进行初始化。

在训练过程中,权重和偏置会自动调整。(向前传播------计算损失------反向传播------更新参数)

**代码:

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(test_set,batch_size=64,drop_last=True)

class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1=Linear(196608,10)

    def forward(self,input):
        output=self.linear1(input)
        return output
xigua1=Xigua()

for data in dataloader:
    imgs,targets=data #torch.Size([64, 3, 32, 32])
    # input=torch.reshape(imgs,(1,1,1,-1))#torch.Size([1, 1, 1, 196608])
    input=torch.flatten(imgs) #flatten展开成一行(仅一维)
    print(input.shape)
    output=xigua1(input)
    print(output)
相关推荐
井底哇哇28 分钟前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证33 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩1 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1062 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
佛州小李哥3 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
IE063 小时前
深度学习系列75:sql大模型工具vanna
深度学习
不惑_3 小时前
深度学习 · 手撕 DeepLearning4J ,用Java实现手写数字识别 (附UI效果展示)
java·深度学习·ui
说私域3 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源