【动手学深度学习】7.3 网络中的网络(NiN)(个人向笔记)

  • LeNet,AlexNet和VGG都有一个共同的设计模型:通过一系列卷积层和汇聚层来提取空间结构特征,然后通过全连接层对特征的表征进行处理
  • AlexNet和VGG对LeNet的改进主要是在于如何扩大和加深这两个模块
  • 网络中的网络(NIN)提出了:在每个像素的通道上分别使用MLP

1. NiN块

  • 卷积层的输入由四维张量组成:样本,通道,高度和宽度
  • 全连接层的输入和输出分别对应于样本和特征的二维张量。NiN的想法时在每个像素位置(针对每个高度和宽度)应用一个全连接层,如果我们将权重连接到每个空间位置,可以将其视为 1 × 1 1\times1 1×1 的卷积层,或者说是作为每个像素位置上独立作用的全连接层
  • 从另一个角度看,即将空间维度中每个像素视为单个样本,将通道视为不同特征
  • 下图说明了VGG和NiN它们块之间的主要差异。NiN块以一个普通的卷积层开始,后面是两个 1 × 1 1\times1 1×1的卷积层。这两个 1 × 1 1\times1 1×1 充当带有ReLU激活函数的逐像素全连接层。第一层卷积窗口形状由用户设置,随后的卷积窗口形状固定为 1 × 1 1\times1 1×1


2. NiN模型

  • 最初的 NiN 网络是在 AlexNet 后不久提出的,显然它从 AlexNet 中得到了一些启示
  • NiN使用窗口形状为 11 × 11 11\times11 11×11、 5 × 5 5\times5 5×5 和 3 × 3 3\times3 3×3 的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为 3 × 3 3\times3 3×3,步幅为2
  • NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间

3. 训练模型

相关推荐
阿巴~阿巴~14 小时前
UDP网络编程:从客户端封装到服务端绑定的深度实践
linux·网络·socket网络编程·sendto函数·ip绑定·udp网络编程
爱打球的白师傅14 小时前
python机器学习工程化demo(包含训练模型,预测数据,模型列表,模型详情,删除模型)支持线性回归、逻辑回归、决策树、SVC、随机森林等模型
人工智能·python·深度学习·机器学习·flask·逻辑回归·线性回归
MediaTea14 小时前
Python 第三方库:TensorFlow(深度学习框架)
开发语言·人工智能·python·深度学习·tensorflow
wanhengidc15 小时前
云手机的网络架构
服务器·网络·游戏·智能手机·架构·云计算
挠到秃头的涛某15 小时前
华为防火墙web配置SSL-在外人员访问内网资源
运维·网络·网络协议·tcp/ip·华为·ssl·防火墙
极客代码15 小时前
第七篇:深度学习SLAM——端到端的革命--从深度特征到神经辐射场的建图新范式
人工智能·python·深度学习·计算机视觉·slam·回环检测·地图构建
有Li15 小时前
面向超声半监督分割的类别特异性无标记数据风险最小化|文献速递-文献分享
人工智能·深度学习·计算机视觉
。puppy15 小时前
企业网络 VLAN 隔离与防火墙互联:实验全解析与实战指南
网络·安全
easy_coder15 小时前
破壁“架构孤岛”:云原生混合网络的AI运维升维实践
网络·云计算
星释15 小时前
Rust 练习册 :深入探索XOR加密与流密码
开发语言·网络·rust