【动手学深度学习】7.3 网络中的网络(NiN)(个人向笔记)

  • LeNet,AlexNet和VGG都有一个共同的设计模型:通过一系列卷积层和汇聚层来提取空间结构特征,然后通过全连接层对特征的表征进行处理
  • AlexNet和VGG对LeNet的改进主要是在于如何扩大和加深这两个模块
  • 网络中的网络(NIN)提出了:在每个像素的通道上分别使用MLP

1. NiN块

  • 卷积层的输入由四维张量组成:样本,通道,高度和宽度
  • 全连接层的输入和输出分别对应于样本和特征的二维张量。NiN的想法时在每个像素位置(针对每个高度和宽度)应用一个全连接层,如果我们将权重连接到每个空间位置,可以将其视为 1 × 1 1\times1 1×1 的卷积层,或者说是作为每个像素位置上独立作用的全连接层
  • 从另一个角度看,即将空间维度中每个像素视为单个样本,将通道视为不同特征
  • 下图说明了VGG和NiN它们块之间的主要差异。NiN块以一个普通的卷积层开始,后面是两个 1 × 1 1\times1 1×1的卷积层。这两个 1 × 1 1\times1 1×1 充当带有ReLU激活函数的逐像素全连接层。第一层卷积窗口形状由用户设置,随后的卷积窗口形状固定为 1 × 1 1\times1 1×1


2. NiN模型

  • 最初的 NiN 网络是在 AlexNet 后不久提出的,显然它从 AlexNet 中得到了一些启示
  • NiN使用窗口形状为 11 × 11 11\times11 11×11、 5 × 5 5\times5 5×5 和 3 × 3 3\times3 3×3 的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为 3 × 3 3\times3 3×3,步幅为2
  • NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间

3. 训练模型

相关推荐
brave and determined16 小时前
可编程逻辑器件学习(day24):异构计算:突破算力瓶颈的未来之路
人工智能·嵌入式硬件·深度学习·学习·算法·fpga·asic
01100001乄夵16 小时前
FPGA零基础入门:TestBench编写完全指南
经验分享·笔记·学习方法·fpga学习之路·fpga 0基础入门
未若君雅裁16 小时前
LeetCode 18 - 四数之和 详解笔记
java·数据结构·笔记·算法·leetcode
nju_spy16 小时前
论文阅读 - 深度学习端到端解决库存管理问题 - 有限时间范围内的多周期补货问题(Management Science)
人工智能·深度学习·动态规划·端到端·库存管理·两阶段pto·多周期补货问题
u***j32416 小时前
深度学习实践
人工智能·深度学习
极客BIM工作室16 小时前
LSTM门控结构:乘法设计的必然性分析
rnn·深度学习·lstm
r***d86516 小时前
深度学习挑战
人工智能·深度学习
龙腾AI白云16 小时前
国内外具身智能VLA模型深度解析(3)
深度学习·数据挖掘
受之以蒙17 小时前
具身智能的“任督二脉”:用 Rust ndarray 打通数据闭环的最后一公里
人工智能·笔记·rust
道一云黑板报17 小时前
大规模低代码系统推荐:知识图谱与 GNN 的性能优化策略
深度学习·神经网络·低代码·性能优化·知识图谱·推荐算法