目标检测数据集图片及标签同步锐化

在目标检测任务中,数据集的质量直接影响到模型的性能。数据增强作为提升数据集多样性和模型泛化能力的常用手段,在图像处理过程中扮演着重要角色。锐化(Sharpening)技术是常见的图像增强方法之一,能够突出图像中的细节特征,使模型在处理边缘、纹理等细节时表现更好。然而,单纯对图像进行锐化处理并不充分,特别是在目标检测任务中,图像的锐化还需与标签(标注框)的同步处理相结合,以保证增强后的图像与其对应的标注信息保持一致性。

本篇文章将介绍如何对目标检测数据集中的图片进行锐化处理,并同步调整相应的标签文件,确保在数据增强的同时,图像与标签信息的精确对应。

代码如下

python 复制代码
import os,shutil
from PIL import Image, ImageEnhance


def write_xml(folder_path,output_folder, new_suffix):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    # 遍历文件夹中的所有文件
    for filename in os.listdir(folder_path):
        # 获取文件的扩展名
        file_base_name, file_extension = os.path.splitext(filename)
        # 构造新的文件名
        new_filename = f"{file_base_name}{new_suffix}{file_extension}"
        # 获取完整的原文件路径和新文件路径
        old_file_path = os.path.join(folder_path, filename)
        new_file_path = os.path.join(output_folder, new_filename)
        # 复制或重命名文件
        shutil.copy(old_file_path, new_file_path)

# 调整对比度
def adjust_contrast(image, factor):
    enhancer = ImageEnhance.Contrast(image)
    adjusted_image = enhancer.enhance(factor)
    return adjusted_image

# 调整锐度
def adjust_sharpness(image, factor):
    enhancer = ImageEnhance.Sharpness(image)
    adjusted_image = enhancer.enhance(factor)
    return adjusted_image

# 批量处理文件夹中的图片
def process_images(input_folder, output_folder, sharpness_factor, new_suffix):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    for filename in os.listdir(input_folder):
        if filename.endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tif')):
            image_path = os.path.join(input_folder, filename)
            image = Image.open(image_path)
            # 调整锐度
            image_with_adjusted_sharpness = adjust_sharpness(image, sharpness_factor)
            file_base_name, file_extension = os.path.splitext(filename)
            new_filename = f"{file_base_name}{new_suffix}{file_extension}"
            # 保存到输出文件夹
            output_path = os.path.join(output_folder, new_filename)
            image_with_adjusted_sharpness.save(output_path)
            print(f"Processed and saved: {output_path}")

# 输入文件夹和输出文件夹路径
input_folder_jpg = r'E:\peanut_data\jj'  #输入图片文件夹
input_folder_xml = r'E:\peanut_data\xx'  #输入标签文件夹
output_folder_jpg = r'E:\peanut_data\jj-'  #输出图片文件夹
output_folder_xml = r'E:\peanut_data\xx-'  #输出标签文件夹
new_suffix = '_r'
# 调整参数
sharpness_factor = 4.0  #锐度因子

# 执行批量处理
process_images(input_folder_jpg, output_folder_jpg, sharpness_factor,new_suffix)
write_xml(input_folder_xml,output_folder_xml, new_suffix)
相关推荐
外参财观15 分钟前
流量变现的边界:携程金融按下暂停键后的冷思考
大数据·人工智能·金融
人工智能AI技术29 分钟前
能用C#开发AI吗?
人工智能·c#
whitelbwwww1 小时前
车牌识别--obb识别车框
人工智能
果粒蹬i1 小时前
AI系统故障诊断:模型崩溃、算力瓶颈与数据漂移的识别与解决策略
人工智能
CCPC不拿奖不改名1 小时前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
Coding茶水间1 小时前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
亿信华辰软件1 小时前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI1 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说2 小时前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授2 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn