目标检测数据集图片及标签同步锐化

在目标检测任务中,数据集的质量直接影响到模型的性能。数据增强作为提升数据集多样性和模型泛化能力的常用手段,在图像处理过程中扮演着重要角色。锐化(Sharpening)技术是常见的图像增强方法之一,能够突出图像中的细节特征,使模型在处理边缘、纹理等细节时表现更好。然而,单纯对图像进行锐化处理并不充分,特别是在目标检测任务中,图像的锐化还需与标签(标注框)的同步处理相结合,以保证增强后的图像与其对应的标注信息保持一致性。

本篇文章将介绍如何对目标检测数据集中的图片进行锐化处理,并同步调整相应的标签文件,确保在数据增强的同时,图像与标签信息的精确对应。

代码如下

python 复制代码
import os,shutil
from PIL import Image, ImageEnhance


def write_xml(folder_path,output_folder, new_suffix):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    # 遍历文件夹中的所有文件
    for filename in os.listdir(folder_path):
        # 获取文件的扩展名
        file_base_name, file_extension = os.path.splitext(filename)
        # 构造新的文件名
        new_filename = f"{file_base_name}{new_suffix}{file_extension}"
        # 获取完整的原文件路径和新文件路径
        old_file_path = os.path.join(folder_path, filename)
        new_file_path = os.path.join(output_folder, new_filename)
        # 复制或重命名文件
        shutil.copy(old_file_path, new_file_path)

# 调整对比度
def adjust_contrast(image, factor):
    enhancer = ImageEnhance.Contrast(image)
    adjusted_image = enhancer.enhance(factor)
    return adjusted_image

# 调整锐度
def adjust_sharpness(image, factor):
    enhancer = ImageEnhance.Sharpness(image)
    adjusted_image = enhancer.enhance(factor)
    return adjusted_image

# 批量处理文件夹中的图片
def process_images(input_folder, output_folder, sharpness_factor, new_suffix):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    for filename in os.listdir(input_folder):
        if filename.endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tif')):
            image_path = os.path.join(input_folder, filename)
            image = Image.open(image_path)
            # 调整锐度
            image_with_adjusted_sharpness = adjust_sharpness(image, sharpness_factor)
            file_base_name, file_extension = os.path.splitext(filename)
            new_filename = f"{file_base_name}{new_suffix}{file_extension}"
            # 保存到输出文件夹
            output_path = os.path.join(output_folder, new_filename)
            image_with_adjusted_sharpness.save(output_path)
            print(f"Processed and saved: {output_path}")

# 输入文件夹和输出文件夹路径
input_folder_jpg = r'E:\peanut_data\jj'  #输入图片文件夹
input_folder_xml = r'E:\peanut_data\xx'  #输入标签文件夹
output_folder_jpg = r'E:\peanut_data\jj-'  #输出图片文件夹
output_folder_xml = r'E:\peanut_data\xx-'  #输出标签文件夹
new_suffix = '_r'
# 调整参数
sharpness_factor = 4.0  #锐度因子

# 执行批量处理
process_images(input_folder_jpg, output_folder_jpg, sharpness_factor,new_suffix)
write_xml(input_folder_xml,output_folder_xml, new_suffix)
相关推荐
工藤学编程1 天前
零基础学AI大模型之Milvus索引实战
人工智能·milvus
海边夕阳20061 天前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI1 天前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_1 天前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭1 天前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT1 天前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"1 天前
专项智能练习(课程类型)
人工智能
2501_918126911 天前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home1 天前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构