自注意力机制self-attention中QKV矩阵的含义

自注意力机制(Self-Attention)是Transformer模型的核心组件,其中Q、K、V矩阵分别代表查询(Query)、键(Key)、值(Value)。它们的作用和含义可以通过信息匹配过程来理解。在自注意力机制中,输入的序列数据会经过线性变换,生成这三个矩阵,然后用于计算注意力权重和最终输出。

1. Q(Query)--- 查询矩阵

  • 含义:查询矩阵代表我们当前正在处理的一个输入位置上的信息,目的是从整个序列中寻找与该位置最相关的信息。换句话说,Q 矩阵中的每个向量(对应于序列中的每个单词或元素)用于"提问":我应该关注哪些位置的信息?
  • 作用:Q 矩阵的每一行对应序列中一个输入向量(通常是词向量或某一层的隐状态),这些向量在后续计算中会与 K(键)矩阵进行相似度计算,以确定应该关注序列中的哪些部分。

2. K(Key)--- 键矩阵

  • 含义:键矩阵用于提供序列中的信息,以供查询矩阵进行匹配。可以理解为K矩阵中存储了"回答"的潜在信息,代表整个序列中每个位置上携带的特征。
  • 作用:K矩阵的每个向量对应序列中的一个元素,当 Q(查询)矩阵与 K(键)矩阵进行点积计算时,会得出它们的相似度评分,这个评分表明查询在当前时刻应该关注该元素的程度。

3. Q(Query)--- 查询矩阵

  • 含义:值矩阵代表序列中的实际信息内容,它是自注意力机制最终返回给每个查询的信息来源。
  • 作用:V 矩阵不会直接参与相似度计算,但在相似度计算得到的注意力权重矩阵确定后,V 矩阵的值会被加权求和,最终返回每个查询所关注的内容。V 矩阵提供的是实际的数据,经过加权后输出结果。

4. 简单类比

可以把 Q、K、V 机制类比为一个信息检索过程

  • Q(查询):类似我们提出的搜索问题,目的是从大量信息中寻找相关答案。
  • K(键):类似信息库中的索引,它们决定哪些信息与查询相关。
  • V(值):类似实际的内容,是查询找到相关信息后的返回结果。

Q 用来提出问题,K 用来匹配相关性,V 则是我们最终希望获取的信息

5. 注意力分数含义

计算公式为: A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q ⋅ K T d k ) V Attention(Q,K,V)=softmax(\frac{Q·K^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk Q⋅KT)V(QK 的转置做内积,再除以K 的维度,经过softmax 归一化,最后与V 相乘。Q,K,V 皆为矩阵)

  1. Q ∗ K T Q*K^T Q∗KT:两个矩阵点乘,数学上也叫做内积------表征两个向量夹角的大小(投影的大小),也就是相关性大小;
  2. / d K /\sqrt{d_K} /dK : d K d_K dK是键向量的维度,用来进行缩放平衡,防止点积值过大;
  3. s o f t m a x ( ) softmax() softmax():归一化;
  4. ∗ V *V ∗V:将注意力权重与值矩阵 V V V 进行加权求和,得到注意力分数;

注意力分数含义:Q 和 K 之间的相关性决定了哪些值(V)对当前查询的Q有较高的贡献,帮助模型在聚焦Q的问题时,给更多的注意力在有用的V身上。

相关推荐
时空无限1 天前
说说transformer 中的掩码矩阵以及为什么能掩盖住词语
人工智能·矩阵·transformer
技术小黑1 天前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
max5006001 天前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
盼小辉丶1 天前
Transformer实战(18)——微调Transformer语言模型进行回归分析
深度学习·语言模型·回归·transformer
Xy-unu2 天前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
ACEEE12222 天前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
kunwen1232 天前
机器学习、深度学习
rnn·langchain·cnn·transformer·langgraph
Baihai IDP2 天前
2025 年大语言模型架构演进:DeepSeek V3、OLMo 2、Gemma 3 与 Mistral 3.1 核心技术剖析
人工智能·ai·语言模型·llm·transformer
咔咔学姐kk3 天前
大模型微调技术宝典:Transformer架构,从小白到专家
人工智能·深度学习·学习·算法·transformer
九章云极AladdinEdu5 天前
绿色算力技术栈:AI集群功耗建模与动态调频系统
人工智能·pytorch·深度学习·unity·游戏引擎·transformer·gpu算力