Spark高级用法-数据源的读取与写入

目录

数据读取

数据写入

总结


数据读取

  • 读文件

    • read.json
    • read.csv

      • csv文件有两个部分构成 头部数据,也就是字段数据,行数数据
    • read.orc
  • 读数据库

    • read.jdbc(jdbc连接地址,table='表名',properties={'user'=用户名,'password'=密码,'driver'='驱动信息'})

缺少连接驱动的错误

拷贝连接驱动包

将MySQL驱动包放入/export/server/spark/jars/目录下

cp /export/server/hive/lib/mysql-connector-java-5.1.32.jar /export/server/spark/jars/

数据库创建测试数据

sql 复制代码
create database itcast charset=utf8;

create table itcast.tb_user(
    id int,
    name varchar(20),
    age int,
    gender varchar(20)
);

insert into  itcast.tb_user values (1,'张三',20,'男');

pyspark读取数据库数据

python 复制代码
from pyspark.sql import SparkSession
ss = SparkSession.builder.getOrCreate()

# 获取外部
df = ss.read.text("hdfs://node1:8020/data/students.txt")
df.show()

# 获取外部数据库数据 采用jdbc方式读取,只要是支持jdbc连接的的数据库都可读
# url参数1  jdbc的连接地址
# table 指定连接的表
# properties 属性参数,指定连接的账户密码及驱动信息
df2 = ss.read.jdbc(
    url='jdbc:mysql://192.168.88.100:3306/itcast',table='tb_user',
    properties={'user':'root','password':'123456','driver':'com.mysql.jdbc.Driver'}
)
df2.show()

数据写入

  • 因为数据是在df中存储,所以使用dataframe进行数据写入

    • 使用dtaframe的的write方法
  • 写入文件有个模式,覆盖和追加两种方式,用mode参数指定

    • 覆盖 overwrite
    • 追加 oppend
  • 写入文件

    • write.json
    • write.csv
    • write.orc
  • 写入数据库

    • write.jdbc(jdbc连接地址,table='表名',properties={'user'=用户名,'password'=密码,'driver'='驱动信息'},mode='写入方式')

数据库创建表

pyspark写入数据库数据

python 复制代码
# 数据写入
from pyspark.sql import SparkSession,Row
ss = SparkSession.builder.getOrCreate()

df = ss.createDataFrame([
    Row(id = 1,name = '张三',age = 20),
    Row(id = 2,name = '李松',age = 20),
    Row(id = 3,name = '荔枝',age = 20)
],
    schema = 'id int,name string,age int'
)

# 将df数据写入hdfs中
df.write.json('hdfs://node1:8020/data/data_json',mode='overwrite')

# 写入数据库
df.write.jdbc('jdbc:mysql://192.168.88.100:3306/itcast?characterEncoding=utf8',table='tb_stu',mode='overwrite',
              properties={'user':'root','password':'123456','driver':'com.mysql.jdbc.Driver'})

验证hdfs是否写入数据

验证数据库是否传入数据

总结

使用read和write实现数据导入导出

读取mysql数据库的原始数据表

df = ss.read.jdbc()

在将读取到的数据导入数仓中

df.write.orc(hdfs://node1:8020/ods/tb_user

相关推荐
豆浆whisky3 分钟前
Go分布式追踪实战:从理论到OpenTelemetry集成|Go语言进阶(15)
开发语言·分布式·golang
苗壮.14 分钟前
「个人 Gitee 仓库」与「企业 Gitee 仓库」同步的几种常见方式
大数据·elasticsearch·gitee
驾数者33 分钟前
Flink SQL入门指南:从零开始搭建流处理应用
大数据·sql·flink
乌恩大侠33 分钟前
DGX Spark 恢复系统
大数据·分布式·spark
KM_锰39 分钟前
flink开发遇到的问题
大数据·flink
happy_king_zi2 小时前
RabbitMQ Quorum 队列与classic队列关系
分布式·rabbitmq
labview_自动化3 小时前
RabbitMQ
分布式·rabbitmq·labview
人大博士的交易之路4 小时前
龙虎榜——20251106
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜
YangYang9YangYan4 小时前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
歪歪1004 小时前
详细介绍一下“集中同步+分布式入库”方案的具体实现步骤
开发语言·前端·分布式·后端·信息可视化