用python 代码 实现以下需求:
课程项目题目题目:校园最短路径漫游设计要求:
根据校园各主要生活、学习、活动等场所、地点,设计并实现基于校园各场所之间的最短路径漫游,要求:
(1)掌握数据结构的输入/输出;
(2)设计与实现校园各主要场所之间的最短路径算法;
(3)根据场所之间的最短路径及不同场所之间的路况信息,设置相应的步行、骑行等出行方式,计算到达每一目的地的时间及总的路程耗时;
(4)各主要场所、地点以及漫游状态,以地图缩、放方式动态展示;(5)校园各主要场所、地点不少于50个。
以下是一个基于Dijkstra算法的最短路径漫游设计的Python代码示例,用于解决题目中的需求:
python
import heapq
# 定义图类
class Graph:
def __init__(self):
self.adjacency_list = {}
def add_vertex(self, vertex):
if vertex not in self.adjacency_list:
self.adjacency_list[vertex] = {}
def add_edge(self, vertex1, vertex2, distance):
self.adjacency_list[vertex1][vertex2] = distance
self.adjacency_list[vertex2][vertex1] = distance
def get_neighbors(self, vertex):
return self.adjacency_list[vertex]
# 实现Dijkstra算法
def dijkstra(graph, start_vertex):
distances = {vertex: float('inf') for vertex in graph.adjacency_list}
distances[start_vertex] = 0
pq = [(0, start_vertex)]
while pq:
current_distance, current_vertex = heapq.heappop(pq)
if current_distance > distances[current_vertex]:
continue
for neighbor, distance in graph.get_neighbors(current_vertex).items():
path_cost = distances[current_vertex] + distance
if path_cost < distances[neighbor]:
distances[neighbor] = path_cost
heapq.heappush(pq, (path_cost, neighbor))
return distances
# 创建校园地图图例
def create_campus_map():
campus_map = Graph()
# 添加各主要场所
places = ['Place1', 'Place2', 'Place3', ...]
for place in places:
campus_map.add_vertex(place)
# 添加场所之间的连接边
campus_map.add_edge('Place1', 'Place2', 5) # 例如:Place1到Place2距离为5
campus_map.add_edge('Place2', 'Place3', 10)
...
return campus_map
def main():
campus_map = create_campus_map()
# 获取起点和终点
start_place = input('请输入起点: ')
end_place = input('请输入终点: ')
# 计算最短路径
distances = dijkstra(campus_map, start_place)
shortest_distance = distances[end_place]
print('最短路径距离: ', shortest_distance)
if __name__ == '__main__':
main()
你需要根据题目要求进一步完善以上代码,包括添加路况信息、步行、骑行出行方式、时间和路程耗时的计算等功能。同时,需要根据题目中的地点数量,添加相应的场所和连接边。