分享一个大模型在请求api接口上的巧用

前言

自从Chatgpt横空出世以来,各种智能工具层出不穷,聊天、绘画、视频等各种工具帮助很多人高效的工作。作为一个开发者,目前常用应用包括代码自动填充,聊天助手等。

这些是工具层面的使用,有没有将大模型和日常编码的前后端流程相结合使用的切入点呢?今天分享一个使用大模型自动调用api接口的示例,可以作为大模型在开发中的另一种使用场景。

接口说明

示例接口如下,一个八字测算的接口(仅做示例,非封建迷信)

请求接口:[https://api.yuanfenju.com/index.php/v1/Bazi/paipan](https://api.yuanfenju.com/index.php/v1/Bazi/paipan)

请求方法:POST

请求body:

python 复制代码
{
    "api_key": "xxxx",
    "name": "张三",
    "sex": 0,
    "type": 1,
    "year": 2000,
    "month": 10,
    "day": 10,
    "hours": 22,
    "minute": 0
}

api_key 需要在网站申请

请求示例:

大模型提取信息发送请求

接口的信息如上,正常开发过程是构造好url, body,然后发送请求。使用大模型首先将文字的信息提取变成请求的body体,使用的langchain框架来完成。

原理非常简单,就是创建合适的提示词,让大模型提取传入内容中的关键字段,并以json格式返回。

示例如下

python 复制代码
import os
import requests
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = "sk-eCWGtrwU14E60A45E8a2T3BlbKFJ18b59d41Fdb748828B0f"
os.environ["OPENAI_API_BASE"] = "https://aigptx.top/v1"


def fun(query):
    url = f"https://api.yuanfenju.com/index.php/v1/Bazi/cesuan"

    # 创建大模型提示词,提取文字的内容
    prompt = ChatPromptTemplate.from_template(
        """你是一个参数查询助手,根据用户输入内容找出相关的参数并按json格式返回。
        JSON字段如下: 
        - "api_key": "K0I5WCmce7jlMZzTw7vi1xsn0", 
        - "name": "姓名", 
        - "sex": "性别,0表示男,1表示女,根据姓名判断", 
        - "type": "日历类型,0农历,1公里,默认1",
        - "year": "出生年份 例:1998", 
        - "month": "出生月份 例 8", 
        - "day": "出生日期,例:8", 
        - "hours": "出生小时 例 14", 
        - "minute": "0",
        如果没有找到相关参数,则需要提醒用户告诉你这些内容,只返回数据结构,不要有其他的评论,
        用户输入:{query}""")

    chain = prompt | ChatOpenAI(temperature=0) | JsonOutputParser()
    data = chain.invoke({"query": query})
    print(f"接口body格式化结果: {data}")

    result = requests.post(url, data)
    if result.status_code == 200:
        print(f"接口关键信息:{result.json()['data']['bazi_info']}")
        try:
            content = result.json()
            res = f"八字为:{content['data']['bazi_info']['bazi']}"
            print(res)
        except Exception as e:
            print(f"八字查询失败,返回数据异常: {e}")
    else:
        print("接口请求状态异常")


if __name__ == "__main__":
    query = "2000年10月10日22时"
    fun(query)

结果:

python 复制代码
接口body格式化结果: {'year': '2000', 'month': '10', 'day': '10', 'hours': '22', 'api_key': 'K0I5WCmce7jlMZzTw7vi1xsn0', 'name': '姓名', 'sex': '性别,0表示男,1表示女,根据姓名判断', 'type': '日历类型,0农历,1公历,默认1', 'minute': '0'}
接口关键信息:{'kw': '戌亥', 'tg_cg_god': ['正财', '劫财', '日元', '偏财'], 'bazi': '庚辰 丙戌 丁卯 辛亥', 'na_yin': '白蜡金'}
八字为:庚辰 丙戌 丁卯 辛亥

复现必要准备:

  1. 安装langchain
  2. 国内openai代理
  3. 网站api_key

分析

首先构造提示词,这是整个流程的灵魂。通常提示词常见使用CRISPE框架,它可以为模型提供详细的背景,任务目标和输出格式要求。

CR:capacity and role 能力与角色 希望模型扮演怎样的角色以及角色具有的能力 你是一个参数查询助手
I:insight 洞察力 完成任务依赖的背景信息
S:statement 指令 希望模型做什么,任务的核心关键词和目标 根据用户输入内容找出相关的参数
P:personality 个性 希望模型以什么样的风格或方式输出 并按json格式返回
E:experiment 尝试 要求模型提供多个答案,任务输出结果数量

本示例中提示词:

python 复制代码
# 创建大模型提示词,提取文字的内容
prompt = ChatPromptTemplate.from_template(
    """你是一个参数查询助手,根据用户输入内容找出相关的参数并按json格式返回。
    JSON字段如下: 
    - "api_key": "K0I5WCmce7jlMZzTw7vi1xsn0", 
    - "name": "姓名", 
    - "sex": "性别,0表示男,1表示女,根据姓名判断", 
    - "type": "日历类型,0农历,1公里,默认1",
    - "year": "出生年份 例:1998", 
    - "month": "出生月份 例 8", 
    - "day": "出生日期,例:8", 
    - "hours": "出生小时 例 14", 
    - "minute": "0",
    如果没有找到相关参数,则需要提醒用户告诉你这些内容,只返回数据结构,不要有其他的评论,
    用户输入:{query}""")

调用过程:

python 复制代码
chain = prompt | ChatOpenAI(temperature=0) | JsonOutputParser()
data = chain.invoke({"query": query})
print(f"接口body格式化结果: {data}")

通过合适的提示词,将传入的信息 2000年10月10日22时提取出来,组装成一个结果。其中ChatOpenAI(temperature=0)是让大模型不要发散思维,严格按照提示词来生成内容,避免结果不准确。JsonOutputParser()返回的结果json格式化。

python 复制代码
 {'year': '2000', 'month': '10', 'day': '10', 'hours': '22', 'api_key': 'K0I5WCmce7jlMZzTw7vi1xsn0', 'name': '姓名', 'sex': '性别,0表示男,1表示女,根据姓名判断', 'type': '日历类型,0农历,1公历,默认1', 'minute': '0'}

然后使用requests发送post请求,解析返回结果。

小结

这是一个很简单的大模型应用,主要看点在于使用大模型组织接口调用的参数,包括字段和格式,替换手动编码的实现方式。个人认为在复杂或者变化频繁的场景下能稍微提升效率。

相关推荐
萧鼎5 分钟前
深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
数据库·python·neo4j
华子w90892585921 分钟前
基于 Python Django 和 Spark 的电力能耗数据分析系统设计与实现7000字论文实现
python·spark·django
Rockson1 小时前
使用Ruby接入实时行情API教程
javascript·python
Tipriest_2 小时前
Python关键字梳理
python·关键字·keyword
im_AMBER3 小时前
学习日志05 python
python·学习
大虫小呓3 小时前
Python 处理 Excel 数据 pandas 和 openpyxl 哪家强?
python·pandas
哪 吒3 小时前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
摸爬滚打李上进5 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
凛铄linshuo6 小时前
爬虫简单实操2——以贴吧为例爬取“某吧”前10页的网页代码
爬虫·python·学习
牛客企业服务6 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘